6 resultados para clinical isolates
em Universidade Complutense de Madrid
Resumo:
Plasmid pB1000 is a mobilizable replicon bearing the bla(ROB-1) beta-lactamase gene that we have recently described in Haemophilus parasuis and Pasteurella multocida animal isolates. Here we report the presence of pB1000 and a derivative plasmid, pB1000', in four Haemophilus influenzae clinical isolates of human origin. Pulsed-field gel electrophoresis showed unrelated patterns in all strains, indicating that the existence of pB1000 in H. influenzae isolates is not the consequence of clonal dissemination. The replicon can be transferred both by transformation and by conjugation into H. influenzae, giving rise to recipients resistant to ampicillin and cefaclor (MICs, > or =64 microg/ml). Stability experiments showed that pB1000 is stable in H. influenzae without antimicrobial pressure for at least 60 generations. Competition experiments between isogenic H. influenzae strains with and without pB1000 revealed a competitive disadvantage of 9% per 10 generations for the transformant versus the recipient. The complete nucleotide sequences of nine pB1000 plasmids from human and animal isolates, as well as the epidemiological data, suggest that animal isolates belonging to the Pasteurellaceae act as an antimicrobial resistance reservoir for H. influenzae. Further, since P. multocida is the only member of this family that can colonize both humans and animals, we propose that P. multocida is the vehicle for the transport of pB1000 between animal- and human-adapted members of the Pasteurellaceae.
Resumo:
The aim of this study was to analyze the genetic characteristics and virulence phenotypes of Streptococcus suis, specifically, in clinical isolates of serotypes 2 and 9 (n = 195), obtained from diverse geographical areas across Spain. Pulsed-field gel electrophoresis (PFGE) typing identified 97 genetic profiles, 68% of which were represented by single isolates, indicative of a substantial genetic diversity among the S. suis isolates analyzed. Five PFGE profiles accounted for 33.3% of the isolates and were isolated from 38% of the herds in nine different provinces, indicative of the bacterium's widespread distribution in the Spanish swine population. Representative isolates of the most prevalent PFGE profiles of both serotypes were subjected to multilocus sequence typing (MLST) analysis. The results indicated that serotypes 2 and 9 have distinct genetic backgrounds. Serotype 2 isolates belong to the ST1 complex, a highly successful clone that has spread over most European countries. In accordance with isolates of this complex, most serotype 2 isolates also expressed the phenotype MRP(+)EF(+)SLY(+). Serotype 9 isolates belong to the ST61 complex, which is distantly related to the widespread European ST87 clone. Also, in contrast to most isolates of the European ST87 clone, which express the large variant MRP*, the majority of serotype 9 isolates (97.9%) did not express the protein.
Resumo:
The accuracy of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) for identifying Streptococcus suis isolates obtained from pigs, wild animals, and humans was evaluated using a PCR-based identification assay as the gold standard. In addition, MALDI-TOF MS was compared with the commercial multi-tests Rapid ID 32 STREP system. From the 129 S. suis isolates included in the study and identified by the molecular method, only 31 isolates (24.03%) had score values ≥2.300 and 79 isolates (61.24%) gave score values between 2.299 and 2.000. After updating the currently available S. suis MALDI Biotyper database with the spectra of three additional clinical isolates of serotypes 2, 7, and 9, most isolates had statistically significant higher score values (mean score: 2.65) than those obtained using the original database (mean score: 2.182). Considering the results of the present study, we suggest using a less restrictive threshold score of ≥2.000 for reliable species identification of S. suis. According to this cut-off value, a total of 125 S. suis isolates (96.9%) were correctly identified using the updated database. These data indicate an excellent performance of MALDI-TOF MS for the identification of S. suis.
Resumo:
In most gram-negative bacteria, acquired multiresistance is conferred by large plasmids compiling numerous antimicrobial resistance genes. Here, we show an evolutionary alternative strategy used by Pasteurella multocida to become resistant to multiple clinically relevant antibiotics. Thirteen beta-lactam-resistant clinical isolates, concomitantly resistant to tetracyclines and/or streptomycin as well as to sulfonamides, were studied. Pulsed-field gel electrophoresis analysis revealed different profiles among the isolates, showing that clonal dissemination was not the sole event responsible for the spread of multiresistance. Each P. multocida strain carried two or three small plasmids between 4 and 6 kb in size. A direct association between resistance profile and plasmid content was found. Complete nucleotide sequencing of all plasmids revealed seven different replicons, six of them belonging to the ColE1 superfamily. All plasmids carried one, or a maximum of two, antimicrobial resistance determinants. Plasmids pB1000 and pB1002 bore bla(ROB-1), pB1001 carried tet(B), pB1003 and pB1005 carried sul2 and strA, pB1006 harbored tet(O), and p9956 bore the tet(H) gene. All plasmids except pB1002 and pB1006 were successfully transformed into Escherichia coli. pB1000, also involved in beta-lactam resistance in Haemophilus parasuis (A. San Millan et al., Antimicrob. Agents Chemother. 51:2260-2264, 2007), was mobilized in E. coli using the conjugation machinery of an IncP plasmid. Stability experiments proved that pB1000 was stable in P. multocida but highly unstable in E. coli. In conclusion, bla(ROB-1) is responsible for beta-lactam resistance in P. multocida in Spain. Coexistence and the spread of small plasmids are used by P. multocida to become multiresistant.
Resumo:
Isolation of Mycobacterium avium complex (MAC) organisms from clinical samples may occur in patients without clinical disease, making the interpretation of results difficult. The clinical relevance of MAC isolates from different types of clinical samples (n = 47) from 39 patients in different sections of a hospital was assessed by comparison with environmental isolates (n = 17) from the hospital. Various methods for identification and typing (commercial probes, phenotypic characteristics, PCR for detection of IS1245 and IS901, sequencing of the hsp65 gene, and pulsed-field gel electrophoresis) were evaluated. The same strain was found in all the environmental isolates, 21 out of 23 (91.3%) of the isolates cultured from urine samples, and 5 out of 19 (26.3%) isolates from respiratory specimens. This strain did not cause disease in the patients. Testing best characterized the strain as M. avium subsp. hominissuis, with the unusual feature that 81.4% of these isolates lacked the IS1245 element. Contamination of certain clinical samples with an environmental strain was the most likely event; therefore, characterization of the environmental mycobacteria present in health care facilities should be performed to discard false-positive isolations in nonsterile samples, mainly urine samples. Molecular techniques applied in this study demonstrated their usefulness for this purpose.
Resumo:
Several factors have recently converged, elevating the need for highly parallel diagnostic platforms that have the ability to detect many known, novel, and emerging pathogenic agents simultaneously. Panviral DNA microarrays represent the most robust approach for massively parallel viral surveillance and detection. The Virochip is a panviral DNA microarray that is capable of detecting all known viruses, as well as novel viruses related to known viral families, in a single assay and has been used to successfully identify known and novel viral agents in clinical human specimens. However, the usefulness and the sensitivity of the Virochip platform have not been tested on a set of clinical veterinary specimens with the high degree of genetic variance that is frequently observed with swine virus field isolates. In this report, we investigate the utility and sensitivity of the Virochip to positively detect swine viruses in both cell culture-derived samples and clinical swine samples. The Virochip successfully detected porcine reproductive and respiratory syndrome virus (PRRSV) in serum containing 6.10 × 10(2) viral copies per microliter and influenza A virus in lung lavage fluid containing 2.08 × 10(6) viral copies per microliter. The Virochip also successfully detected porcine circovirus type 2 (PCV2) in serum containing 2.50 × 10(8) viral copies per microliter and porcine respiratory coronavirus (PRCV) in turbinate tissue homogenate. Collectively, the data in this report demonstrate that the Virochip can successfully detect pathogenic viruses frequently found in swine in a variety of solid and liquid specimens, such as turbinate tissue homogenate and lung lavage fluid, as well as antemortem samples, such as serum.