2 resultados para chi square test

em Universidade Complutense de Madrid


Relevância:

90.00% 90.00%

Publicador:

Resumo:

We consider a robust version of the classical Wald test statistics for testing simple and composite null hypotheses for general parametric models. These test statistics are based on the minimum density power divergence estimators instead of the maximum likelihood estimators. An extensive study of their robustness properties is given though the influence functions as well as the chi-square inflation factors. It is theoretically established that the level and power of these robust tests are stable against outliers, whereas the classical Wald test breaks down. Some numerical examples confirm the validity of the theoretical results.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Omnibus tests of significance in contingency tables use statistics of the chi-square type. When the null is rejected, residual analyses are conducted to identify cells in which observed frequencies differ significantly from expected frequencies. Residual analyses are thus conditioned on a significant omnibus test. Conditional approaches have been shown to substantially alter type I error rates in cases involving t tests conditional on the results of a test of equality of variances, or tests of regression coefficients conditional on the results of tests of heteroscedasticity. We show that residual analyses conditional on a significant omnibus test are also affected by this problem, yielding type I error rates that can be up to 6 times larger than nominal rates, depending on the size of the table and the form of the marginal distributions. We explored several unconditional approaches in search for a method that maintains the nominal type I error rate and found out that a bootstrap correction for multiple testing achieved this goal. The validity of this approach is documented for two-way contingency tables in the contexts of tests of independence, tests of homogeneity, and fitting psychometric functions. Computer code in MATLAB and R to conduct these analyses is provided as Supplementary Material.