3 resultados para cetaceans

em Universidade Complutense de Madrid


Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Herpesvirus can infect a wide range of animal species: mammals, birds, reptiles, fish, amphibians and bivalves. In marine mammals, several alpha- and gammaherpesvirus have been identified in some cetaceans and pinnipeds species. To date, however, this virus has not been detected in any member of the Balaenoptera genus. CASE PRESENTATION Herpesvirus was determined by molecular methods in tissue samples from a male fin whale juvenile (Balaenoptera physalus) and a female common minke whale calf (Balaenoptera acutorostrata) stranded on the Mediterranean coast of the Region of Valencia (Spain). Samples of skin and penile mucosa from the fin whale and samples of skin, muscle and central nervous system tissue from the common minke whale tested positive for herpesvirus based on sequences of the DNA polymerase gene. Sequences from fin whale were identical and belonged to the Alphaherpesvirinae subfamily. Only members of the Gammaherpesvirinae subfamily were amplified from the common minke whale, and sequences from the muscle and central nervous system were identical. Sequences in GenBank most closely related to these novel sequences were viruses isolated from other cetacean species, consistent with previous observations that herpesviruses show similar phylogenetic branching as their hosts. CONCLUSIONS To our knowledge, this is the first molecular determination of herpesvirus in the Balaenoptera genus. It shows that herpesvirus should be included in virological evaluation of these animals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Monitoring body temperature is essential in veterinary care as minor variations may indicate dysfunction. Rectal temperature is widely used as a proxy for body temperature, but measuring it requires special equipment, training or restraining, and it potentially stresses animals. Infrared thermography is an alternative that reduces handling stress, is safer for technicians and works well for untrained animals. This study analysed thermal reference points in five marine mammal species: bottlenose dolphin (Tursiops truncatus); beluga whale (Delphinapterus leucas); Patagonian sea lion (Otaria flavescens); harbour seal (Phoca vitulina); and Pacific walrus (Odobenus rosmarus divergens). RESULTS The thermogram analysis revealed that the internal blowhole mucosa temperature is the most reliable indicator of body temperature in cetaceans. The temperatures taken during voluntary breathing with a camera held perpendicularly were practically identical to the rectal temperature in bottlenose dolphins and were only 1 °C lower than the rectal temperature in beluga whales. In pinnipeds, eye temperature appears the best parameter for temperature control. In these animals, the average times required for temperatures to stabilise after hauling out, and the average steady-state temperature values, differed according to species: Patagonian sea lions, 10 min, 31.13 °C; harbour seals, 10 min, 32.27 °C; Pacific walruses, 5 min, 29.93 °C. CONCLUSIONS The best thermographic and most stable reference points for monitoring body temperature in marine mammals are open blowhole in cetaceans and eyes in pinnipeds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Adenoviruses are common pathogens in vertebrates, including humans. In marine mammals, adenovirus has been associated with fatal hepatitis in sea lions. However, only in rare cases have adenoviruses been detected in cetaceans, where no clear correlation was found between presence of the virus and disease status. CASE PRESENTATION A novel adenovirus was identified in four captive bottlenose dolphins with self-limiting gastroenteritis. Viral detection and identification were achieved by: PCR-amplification from fecal samples; sequencing of partial adenovirus polymerase (pol) and hexon genes; producing the virus in HeLa cells, with PCR and immunofluorescence detection, and with sequencing of the amplified pol and hexon gene fragments. A causative role of this adenovirus for gastroenteritis was suggested by: 1) we failed to identify other potential etiological agents; 2) the exclusive detection of this novel adenovirus and of seropositivity for canine adenoviruses 1 and 2 in the four sick dolphins, but not in 10 healthy individuals of the same captive population; and 3) the virus disappeared from feces after clinical signs receded. The partial sequences of the amplified fragments of the pol and hexon genes were closest to those of adenoviruses identified in sea lions with fatal adenoviral hepatitis, and to a Genbank-deposited sequence obtained from a harbour porpoise. CONCLUSION These data suggest that adenovirus can cause self-limiting gastroenteritis in dolphins. This adenoviral infection can be detected by serology and by PCR detection in fecal material. Lack of signs of hepatitis in sick dolphins may reflect restricted tissue tropism or virulence of this adenovirus compared to those of the adenovirus identified in sea lions. Gene sequence-based phylogenetic analysis supports a common origin of adenoviruses that affect sea mammals. Our findings suggest the need for vigilance against adenoviruses in captive and wild dolphin populations.