8 resultados para bremsstrahlung spectrum
em Universidade Complutense de Madrid
Resumo:
The energy spectrum of ultra-high energy cosmic rays above 10(18)eV is measured using the hybrid events collected by the Pierre Auger Observatory between November 2005 and September 2010. The large exposure of the Observatory allows the measurement of the main features of the energy spectrum with high statistics. Full Monte Carlo simulations of the extensive air showers (based on the CORSIKA code) and of the hybrid detector response are adopted here as an independent cross check of the standard analysis (Phys. Lett. B 685, 239 (2010)). The dependence on mass composition and other systematic uncertainties are discussed in detail and, in the full Monte Carlo approach, a region of confidence for flux measurements is defined when all the uncertainties are taken into account. An update is also reported of the energy spectrum obtained by combining the hybrid spectrum and that measured using the surface detector array.
Resumo:
We theoretically study the resonance fluorescence spectrum of a three-level quantum emitter coupled to a spherical metallic nanoparticle. We consider the case that the quantum emitter is driven by a single laser field along one of the optical transitions. We show that the development of the spectrum depends on the relative orientation of the dipole moments of the optical transitions in relation to the metal nanoparticle. In addition, we demonstrate that the location and width of the peaks in the spectrum are strongly modified by the exciton-plasmon coupling and the laser detuning, allowing to achieve controlled strongly subnatural spectral line. A strong antibunching of the fluorescent photons along the undriven transition is also obtained. Our results may be used for creating a tunable source of photons which could be used for a probabilistic entanglement scheme in the field of quantum information processing.
Measurement of the energy spectrum of cosmic rays above 10(18) eV using the Pierre Auger Observatory
Resumo:
We report a measurement of the flux of cosmic rays with unprecedented precision and Statistics using the Pierre Auger Observatory Based on fluorescence observations in coincidence with at least one Surface detector we derive a spectrum for energies above 10(18) eV We also update the previously published energy spectrum obtained with the surface detector array The two spectra are combined addressing the systematic uncertainties and, in particular. the influence of the energy resolution on the spectral shape The spectrum can be described by a broken power law E-gamma with index gamma = 3 3 below the ankle which is measured at log(10)(E-ankle/eV) = 18 6 Above the ankle the spectrum is described by a power law with index 2 6 followed by a flux suppression, above about log(10)(E/eV) = 19 5, detected with high statistical significance (C) 2010 Elsevier B V All rights reserved
Resumo:
We study the conjectured “insensitivity to chiral symmetry breaking” in the highly excited light baryon spectrum. While the experimental spectrum is being measured at JLab and CBELSA/TAPS, this insensitivity remains to be computed theoretically in detail. As the only existing option to have both confinement, highly excited states, and chiral symmetry, we adopt the truncated Coulomb-gauge formulation of QCD, considering a linearly confining Coulomb term. Adopting a systematic and numerically intensive variational treatment up to 12 harmonic oscillator shells we are able to access several angular and radial excitations. We compute both the excited spectra of I=1/2 and I=3/2 baryons, up to large spin J=13/2, and study in detail the proposed chiral multiplets. While the static-light and light-light spectra clearly show chiral symmetry restoration high in the spectrum, the realization of chiral symmetry is more complicated in the baryon spectrum than earlier expected.
Resumo:
In the study of the spatial characteristics of the visual channels, the power spectrum model of visual masking is one of the most widely used. When the task is to detect a signal masked by visual noise, this classical model assumes that the signal and the noise are previously processed by a bank of linear channels and that the power of the signal at threshold is proportional to the power of the noise passing through the visual channel that mediates detection. The model also assumes that this visual channel will have the highest ratio of signal power to noise power at its output. According to this, there are masking conditions where the highest signal-to-noise ratio (SNR) occurs in a channel centered in a spatial frequency different from the spatial frequency of the signal (off-frequency looking). Under these conditions the channel mediating detection could vary with the type of noise used in the masking experiment and this could affect the estimation of the shape and the bandwidth of the visual channels. It is generally believed that notched noise, white noise and double bandpass noise prevent off-frequency looking, and high-pass, low-pass and bandpass noises can promote it independently of the channel's shape. In this study, by means of a procedure that finds the channel that maximizes the SNR at its output, we performed numerical simulations using the power spectrum model to study the characteristics of masking caused by six types of one-dimensional noise (white, high-pass, low-pass, bandpass, notched, and double bandpass) for two types of channel's shape (symmetric and asymmetric). Our simulations confirm that (1) high-pass, low-pass, and bandpass noises do not prevent the off-frequency looking, (2) white noise satisfactorily prevents the off-frequency looking independently of the shape and bandwidth of the visual channel, and interestingly we proved for the first time that (3) notched and double bandpass noises prevent off-frequency looking only when the noise cutoffs around the spatial frequency of the signal match the shape of the visual channel (symmetric or asymmetric) involved in the detection. In order to test the explanatory power of the model with empirical data, we performed six visual masking experiments. We show that this model, with only two free parameters, fits the empirical masking data with high precision. Finally, we provide equations of the power spectrum model for six masking noises used in the simulations and in the experiments.
Resumo:
The chromogenic βLacta test developed for the rapid detection of β-lactamase-hydrolyzing extended-spectrum cephalosporins in Enterobacteriaceae revealed good performance with extended-spectrum β-lactamase (ESBL) producers (97.5% true-positive results). However, false-negative results occurred with chromosomal AmpC hyperproducers and plasmid AmpC producers, whereas uninterpretable results were mostly due to VIM-1 carbapenemase producers and possibly low levels of expressed ESBLs.
Resumo:
Aminoglycosides and beta-lactams are used for the treatment of a wide range of infections due to both Gram-negative and Gram-positive. An emerging aminoglycoside resistance mechanism, methylation of the aminoacyl site of the 16S rRNA, confers high-level resistance to clinically important aminoglycosides such as amikacin, tobramycin and gentamicin. Eight 16S rRNA methyltransferase genes, armA, rmtA, rmtB, rmtC, rmtD, rmtE, rmtF and npmA, have been identified in several species of enterobacteria worldwide (2, 6, 7, 9, 11, 13, 14). Resistance to extended spectrum β-lactams remains additionally an important clinical problem. Apart from the large TEM, SHV, and CTX-M families, several other extended-spectrum β-lactamases (ESBLs) have been identified, including VEB enzymes, which confer high-level resistance to cephalosporins and monobactams. Although 16S rRNA methyltransferases have been frequently identified associated with different ESBLs, there has been no report of association of a 16S rRNA methyltransferase with a VEB enzyme, except for the identification of rmtC with blaVEB-6 (14)
Resumo:
The invention relates to a variable-spectrum solar simulator for characterising photovoltaic systems. The simulator can be used to obtain a spectrum adjusted to the solar spectrum, both for a standard spectrum or a real spectrum adjusted to local irradiation conditions. The simulator also allows the spatial-angular characteristics of the sun to be reproduced. The invention comprises: a broad-spectrum light source, the flux from which is emitted through an aperture; an optical system which collimates the primary source; a system which disperses the beam chromatically; an optical system which forms an image of the dispersed primary source at a given position, at which a spatial mask is placed in order to filter the received irradiance spectrally; an optical system which captures the filtered spectrum and returns, mixes and concentrates same in a secondary source with the desired spectral, angular, and spatial characteristics; an optical system which collimates the secondary source such that it reproduces the angular characteristics of the sun; and a control system.