9 resultados para attenuazione multipath diversità beacon Bluetooth Low Energy prossimità localizzazione indoor
em Universidade Complutense de Madrid
Resumo:
Este proyecto consiste en el diseño e implementación de un dispositivo que permite el registro de los datos de acelerometría de un trayecto realizado por un ciclista para medir el esfuerzo experimentado por éste. Este dispositivo se fijará al manillar o la tija de una bicicleta de montaña y se complementará con la información proporcionada por el GPS de un móvil. Los datos de acelerometría registrados por el dispositivo se enviarán a dicho dispositivo móvil mediante Bluetooth Low Energy, cuyo funcionamiento se explicará durante el transcurso de esta memoria.
Resumo:
Isomerism is ubiquitous in chemistry, physics, and biology. In atomic and molecular physics, in particular, isomer effects are well known in electron-impact phenomena; however, very little is known for positron collisions. Here we report on a set of experimental and theoretical cross sections for low-energy positron scattering from the three structural isomers of pentane: normal-pentane, isopentane, and neopentane. Total cross sections for positron scattering from normal-pentane and isopentane were measured at the University of Trento at incident energies between 0.1 and 50 eV. Calculations of the total cross sections, integral cross sections for elastic scattering, positronium formation, and electronic excitations plus direct ionization, as well as elastic differential cross sections were computed for all three isomers between 1 and 1000 eV using the independent atom model with screening corrected additivity rule. No definitive evidence of a significant isomer effect in positron scattering from the pentane isomers appears to be present. (C) 2016 AIP Publishing LLC.
Resumo:
The Upper Miocene stratigraphic succession of the Las Minas Basin, located at the external zone of the Betic Chain in SE Spain, preserves several examples of lake carbonate bench deposits. Excellent exposures of the carbonate benches allow detailed observation of the architecture of these sediments and provide new insights for the ‘‘steep-gradient bench margin–low energy’’ model proposed by Platt and Wright (1991). The lake carbonate benches developed in close association with fluvially dominated shallow deltas that exhibit typical Gilbert-type profiles. The delta sequences comprise bottomset prodelta marl facies, distal to proximal foreset facies, deposited mainly in a delta-front environment, and topset facies, the latter reflecting both subaqueous delta-front and subaerial delta-plain environments. The development of the carbonate benches was constrained by the convexupward morphology of the deltaic deposits, which led to the available accommodation space for the growth of the steep-gradient platforms. The benches display a progradational pattern characterized by sigmoid-oblique internal geometries and offlap upper boundary relationships, which suggests that the carbonate benches developed under slow though continuous lake-level rise. Both the dimensions of the benches and the dominant carbonate components (i.e., encrusted charophyte stems and calcified cyanobaterial remains), allow comparisons with the progradational marl benches recognized in modern temperate hardwater lakes. Accordingly, the case study presented here provides a good ancient sedimentary analog for low-energy lake carbonate benches. Moreover, the evolutionary trend inferred from the fossil example offers new insights into the depositional conditions of this type of sediment and allows recognition of the transitional pattern from bench to ramp carbonate lake margins.
Pseudoscalar susceptibilities and quark condensates: chiral restoration and lattice screening masses
Resumo:
We derive the formal Ward identities relating pseudoscalar susceptibilities and quark condensates in three-flavor QCD, including consistently the 77-n' sector and the U-A(1) anomaly. These identities are verified in the low-energy realization provided by ChPT, both in the standard SU(3) framework for the octet case and combining the use of the SU(3) framework and the large-Nc expansion of QCD to account properly for the nonet sector and anomalous contributions. The analysis is performed including finite temperature corrections as well as the calculation of U(3) quark condensates and all pseudoscalar susceptibilities, which together with the full set of Ward identities, are new results of this work. Finally, the Ward identities are used to derive scaling relations for pseudoscalar masses which explain the behavior with temperature of lattice screening masses near chiral symmetry restoration.
Resumo:
We introduce a general class of su(1|1) supersymmetric spin chains with long-range interactions which includes as particular cases the su(1|1) Inozemtsev (elliptic) and Haldane-Shastry chains, as well as the XX model. We show that this class of models can be fermionized with the help of the algebraic properties of the su(1|1) permutation operator and take advantage of this fact to analyze their quantum criticality when a chemical potential term is present in the Hamiltonian. We first study the low-energy excitations and the low-temperature behavior of the free energy, which coincides with that of a (1+1)-dimensional conformal field theory (CFT) with central charge c=1 when the chemical potential lies in the critical interval (0,E(π)), E(p) being the dispersion relation. We also analyze the von Neumann and Rényi ground state entanglement entropies, showing that they exhibit the logarithmic scaling with the size of the block of spins characteristic of a one-boson (1+1)-dimensional CFT. Our results thus show that the models under study are quantum critical when the chemical potential belongs to the critical interval, with central charge c=1. From the analysis of the fermion density at zero temperature, we also conclude that there is a quantum phase transition at both ends of the critical interval. This is further confirmed by the behavior of the fermion density at finite temperature, which is studied analytically (at low temperature), as well as numerically for the su(1|1) elliptic chain.
Resumo:
Since data-taking began in January 2004, the Pierre Auger Observatory has been recording the count rates of low energy secondary cosmic ray particles for the self-calibration of the ground detectors of its surface detector array. After correcting for atmospheric effects, modulations of galactic cosmic rays due to solar activity and transient events are observed. Temporal variations related with the activity of the heliosphere can be determined with high accuracy due to the high total count rates. In this study, the available data are presented together with an analysis focused on the observation of Forbush decreases, where a strong correlation with neutron monitor data is found.
Resumo:
Memristive switching serves as the basis for a new generation of electronic devices. Memristors are two-terminal devices in which the current is turned on and off by redistributing point defects, e.g., vacancies, which is difficult to control. Memristors based on alternative mechanisms have been explored, but achieving both the high On/Off ratio and the low switching energy desirable for use in electronics remains a challenge. Here we report memristive switching in a La_(0.7)Ca_(0.3)MnO_(3)/PrBa_(2)Cu_(3)O_(7) bilayer with an On/Off ratio greater than 103 and demonstrate that the phenomenon originates from a new type of interfacial magnetoelectricity. Using results from firstprinciples calculations, we show that an external electric-field induces subtle displacements of the interfacial Mn ions, which switches on/off an interfacial magnetic “dead” layer, resulting in memristive behavior for spin-polarized electron transport across the bilayer. The interfacial nature of the switching entails low energy cost about of a tenth of atto Joule for write/erase a “bit”. Our results indicate new opportunities for manganite/cuprate systems and other transition-metal-oxide junctions in memristive applications.
Resumo:
In this work, we report theoretical and experimental cross sections for elastic scattering of electrons by chlorobenzene (ClB). The theoretical integral and differential cross sections (DCSs) were obtained with the Schwinger multichannel method implemented with pseudopotentials (SMCPP) and the independent atom method with screening corrected additivity rule (IAM-SCAR). The calculations with the SMCPP method were done in the static-exchange (SE) approximation, for energies above 12 eV, and in the static-exchange plus polarization approximation, for energies up to 12 eV. The calculations with the IAM-SCAR method covered energies up to 500 eV. The experimental differential cross sections were obtained in the high resolution electron energy loss spectrometer VG-SEELS 400, in Lisbon, for electron energies from 8.0 eV to 50 eV and angular range from 7 degrees to 110 degrees. From the present theoretical integral cross section (ICS) we discuss the low-energy shape-resonances present in chlorobenzene and compare our computed resonance spectra with available electron transmission spectroscopy data present in the literature. Since there is no other work in the literature reporting differential cross sections for this molecule, we compare our theoretical and experimental DCSs with experimental data available for the parent molecule benzene. Published by AIP Publishing.
Resumo:
Aims. We study in detail nine sources in the direction of the young σ Orionis cluster, which is considered to be a unique site for studying stellar and substellar formation. The nine sources were selected because of their peculiar properties, such as extremely-red infrared colours or excessively strong Hα emission for their blue optical colours. Methods. We acquired high-quality, low-resolution spectroscopy (R ∼ 500) of the nine targets with ALFOSC at the Nordic Optical Telescope. We also re-analysed [24]-band photometry from MIPS/Spitzer and compiled the highest quality photometric dataset available at the ViJHK_s passbands and the four IRAC/Spitzer channels, for constructing accurate spectral energy distributions between 0.55 and 24 μm. Results. The nine targets were classified into: one Herbig Ae/Be star with a scattering edge-on disc; two G-type stars; one X-ray flaring, early-M, young star with chromospheric Hα emission; one very low-mass, accreting, young spectroscopic binary; two young objects at the brown-dwarf boundary with the characteristics of classical T Tauri stars; and two emission-line galaxies, one undergoing star formation, and another whose spectral energy distribution is dominated by an active galactic nucleus. We also discovered three infrared sources associated with overdensities in a cold cloud of the cluster centre. Conclusions. Low-resolution spectroscopy and spectral energy distributions are a vital tool for measuring the physical properties and evolution of young stars and candidates in the σ Orionis cluster.