5 resultados para application technique
em Universidade Complutense de Madrid
Resumo:
Principal component analysis phase shifting (PCA) is a useful tool for fringe pattern demodulation in phase shifting interferometry. The PCA has no restrictions on background intensity or fringe modulation, and it is a self-calibrating phase sampling algorithm (PSA). Moreover, the technique is well suited for analyzing arbitrary sets of phase-shifted interferograms due to its low computational cost. In this work, we have adapted the standard phase shifting algorithm based on the PCA to the particular case of photoelastic fringe patterns. Compared with conventional PSAs used in photoelasticity, the PCA method does not need calibrated phase steps and, given that it can deal with an arbitrary number of images, it presents good noise rejection properties, even for complicated cases such as low order isochromatic photoelastic patterns. © 2016 Optical Society of America.
Resumo:
We propose an accurate technique for obtaining highly collimated beams, which also allows testing the collimation degree of a beam. It is based on comparing the period of two different self-images produced by a single diffraction grating. In this way, variations in the period of the diffraction grating do not affect to the measuring procedure. Self-images are acquired by two CMOS cameras and their periods are determined by fitting the variogram function of the self-images to a cosine function with polynomial envelopes. This way, loss of accuracy caused by imperfections of the measured self-images is avoided. As usual, collimation is obtained by displacing the collimation element with respect to the source along the optical axis. When the period of both self-images coincides, collimation is achieved. With this method neither a strict control of the period of the diffraction grating nor a transverse displacement, required in other techniques, are necessary. As an example, a LED considering paraxial approximation and point source illumination is collimated resulting a resolution in the divergence of the beam of σ φ = ± μrad.
Resumo:
An accurate and simple technique for determining the focal length of a lens is presented. It consists of measuring the period of the fringes produced by a diffraction grating at the near field when it is illuminated with a beam focused by the unknown lens. In paraxial approximation, the period of the fringes varies linearly with the distance. After some calculations, a simple extrapolation of data is performed to obtain the locations of the principal plane and the focal plane of the lens. Thus, the focal length is obtained as the distance between the two mentioned planes. The accuracy of the method is limited by the collimation degree of the incident beam and by the algorithm used to obtain the period of the fringes. We have checked the technique with two commercial lenses, one convergent and one divergent, with nominal focal lengths (+100±1) mm and (−100±1) mm respectively. We have experimentally obtained the focal lengths resulting into the interval given by the manufacturer but with an uncertainty of 0.1%, one order of magnitude lesser than the uncertainty given by the manufacturer.
Resumo:
Dynamically reconfigurable hardware is a promising technology that combines in the same device both the high performance and the flexibility that many recent applications demand. However, one of its main drawbacks is the reconfiguration overhead, which involves important delays in the task execution, usually in the order of hundreds of milliseconds, as well as high energy consumption. One of the most powerful ways to tackle this problem is configuration reuse, since reusing a task does not involve any reconfiguration overhead. In this paper we propose a configuration replacement policy for reconfigurable systems that maximizes task reuse in highly dynamic environments. We have integrated this policy in an external taskgraph execution manager that applies task prefetch by loading and executing the tasks as soon as possible (ASAP). However, we have also modified this ASAP technique in order to make the replacements more flexible, by taking into account the mobility of the tasks and delaying some of the reconfigurations. In addition, this replacement policy is a hybrid design-time/run-time approach, which performs the bulk of the computations at design time in order to save run-time computations. Our results illustrate that the proposed strategy outperforms other state-ofthe-art replacement policies in terms of reuse rates and achieves near-optimal reconfiguration overhead reductions. In addition, by performing the bulk of the computations at design time, we reduce the execution time of the replacement technique by 10 times with respect to an equivalent purely run-time one.
Resumo:
Solder-joining using metallic solder alloys is an alternative to adhesive bonding. Laser-based soldering processes are especially well suited for the joining of optical components made of fragile and brittle materials such as glasses, ceramics and optical crystals due to a localized and minimized input of thermal energy. The Solderjet Bumping technique is used to assemble a miniaturized laser resonator in order to obtain higher robustness, wider thermal conductivity performance, higher vacuum and radiation compatibility, and better heat and long term stability compared with identical glued devices. The resulting assembled compact and robust green diode-pumped solid-state laser is part of the future Raman Laser Spectrometer designed for the Exomars European Space Agency (ESA) space mission 2018.