4 resultados para antineutrophil cytoplasmic antibodies
em Universidade Complutense de Madrid
Resumo:
In the absence of effective vaccine(s), control of African swine fever caused by African swine fever virus (ASFV) must be based on early, efficient, cost-effective detection and strict control and elimination strategies. For this purpose, we developed an indirect ELISA capable of detecting ASFV antibodies in either serum or oral fluid specimens. The recombinant protein used in the ELISA was selected by comparing the early serum antibody response of ASFV-infected pigs (NHV-p68 isolate) to three major recombinant polypeptides (p30, p54, p72) using a multiplex fluorescent microbead-based immunoassay (FMIA). Non-hazardous (non-infectious) antibody-positive serum for use as plate positive controls and for the calculation of sample-to-positive (S:P) ratios was produced by inoculating pigs with a replicon particle (RP) vaccine expressing the ASFV p30 gene. The optimized ELISA detected anti-p30 antibodies in serum and/or oral fluid samples from pigs inoculated with ASFV under experimental conditions beginning 8 to 12 days post inoculation. Tests on serum (n = 200) and oral fluid (n = 200) field samples from an ASFV-free population demonstrated that the assay was highly diagnostically specific. The convenience and diagnostic utility of oral fluid sampling combined with the flexibility to test either serum or oral fluid on the same platform suggests that this assay will be highly useful under the conditions for which OIE recommends ASFV antibody surveillance, i.e., in ASFV-endemic areas and for the detection of infections with ASFV isolates of low virulence.
Resumo:
BACKGROUND African swine fever (ASF) is one of the most complex viral diseases affecting both domestic and wild pigs. It is caused by ASF virus (ASFV), the only DNA virus which can be efficiently transmitted by an arthropod vector, soft ticks of the genus Ornithodoros. These ticks can be part of ASFV-transmission cycles, and in Europe, O. erraticus was shown to be responsible for long-term maintenance of ASFV in Spain and Portugal. In 2014, the disease has been reintroduced into the European Union, affecting domestic pigs and, importantly, also the Eurasian wild boar population. In a first attempt to assess the risk of a tick-wild boar transmission cycle in Central Europe that would further complicate eradication of the disease, over 700 pre-existing serum samples from wild boar hunted in four representative German Federal States were investigated for the presence of antibodies directed against salivary antigen of Ornithodoros erraticus ticks using an indirect ELISA format. RESULTS Out of these samples, 16 reacted with moderate to high optical densities that could be indicative of tick bites in sampled wild boar. However, these samples did not show a spatial clustering (they were collected from distant geographical regions) and were of bad quality (hemolysis/impurities). Furthermore, all positive samples came from areas with suboptimal climate for soft ticks. For this reason, false positive reactions are likely. CONCLUSION In conclusion, the study did not provide stringent evidence for soft tick-wild boar contact in the investigated German Federal States and thus, a relevant involvement in the epidemiology of ASF in German wild boar is unlikely. This fact would facilitate the eradication of ASF in the area, although other complex relations (wild boar biology and interactions with domestic pigs) need to be considered.
Resumo:
BACKGROUND Elephants are classified as critically endangered animals by the International Union for Conservation of Species (IUCN). Elephant endotheliotropic herpesvirus (EEHV) poses a large threat to breeding programs of captive Asian elephants by causing fatal haemorrhagic disease. EEHV infection is detected by PCR in samples from both clinically ill and asymptomatic elephants with an active infection, whereas latent carriers can be distinguished exclusively via serological assays. To date, identification of latent carriers has been challenging, since there are no serological assays capable of detecting seropositive elephants. RESULTS Here we describe a novel ELISA that specifically detects EEHV antibodies circulating in Asian elephant plasma/serum. Approximately 80 % of PCR positive elephants display EEHV-specific antibodies. Monitoring three Asian elephant herds from European zoos revealed that the serostatus of elephants within a herd varied from non-detectable to high titers. The antibody titers showed typical herpes-like rise-and-fall patterns in time which occur in all seropositive animals in the herd more or less simultaneously. CONCLUSIONS This study shows that the developed ELISA is suitable to detect antibodies specific to EEHV. It allows study of EEHV seroprevalence in Asian elephants. Results confirm that EEHV prevalence among Asian elephants (whether captive-born or wild-caught) is high.
Resumo:
The diagnosis of Small Ruminant Lentivirus (SRLV) is based on clinical signs, pathological lesions and laboratory testing. No standard reference test for the diagnosis of maedi visna has been validated up to the present, and it is puzzling that tests which detect antibodies against the virus and tests which detect the proviral genome may render opposite results. The aim of this study was to evaluate the presence in milk throughout a lactation period of specific antibodies by ELISA and of SRLV proviral DNA by a PCR of the highly conserved pol region. A six-month study was conducted with the milk of 28 ewes and 31 goats intensively reared. The percentage of animals with antibodies against SRLV increased throughout the study period. Seroprevalence in sheep was 28% at the beginning of the study and by the end it had increased up to 52.4%. In goats, initial seroprevalence of 5.6% increased to 16%. The percentage of PCR positive ewes was stable throughout the study period. Of the positive sheep, 21.4% were PCR-positive before antibodies could be detected and most of them became PCR-negative shortly after the first detection of antibodies. This might suggest that antibodies have a neutralizing effect. In addition, an equal percentage of sheep were always PCR-negative but either became ELISA-positive or was always ELISA-positive, which might support this hypothesis. On the other hand, the PCR results in goats did not follow any pattern and oscillated between 35.3% and 55.6% depending on the month. Most goats positive by PCR failed to develop antibodies in the 6 months tested. We may conclude that the infection and the antibody response to it follow a different trend in sheep and goats.