2 resultados para Zaire Viruses

em Universidade Complutense de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The situation in Europe concerning honeybees has in recent years become increasingly aggravated with steady decline in populations and/or catastrophic winter losses. This has largely been attributed to the occurrence of a variety of known and "unknown", emerging novel diseases. Previous studies have demonstrated that colonies often can harbour more than one pathogen, making identification of etiological agents with classical methods difficult. By employing an unbiased metagenomic approach, which allows the detection of both unexpected and previously unknown infectious agents, the detection of three viruses, Aphid Lethal Paralysis Virus (ALPV), Israel Acute Paralysis Virus (IAPV), and Lake Sinai Virus (LSV), in honeybees from Spain is reported in this article. The existence of a subgroup of ALPV with the ability to infect bees was only recently reported and this is the first identification of such a strain in Europe. Similarly, LSV appear to be a still unclassified group of viruses with unclear impact on colony health and these viruses have not previously been identified outside of the United States. Furthermore, our study also reveals that these bees carried a plant virus, Turnip Ringspot Virus (TuRSV), potentially serving as important vector organisms. Taken together, these results demonstrate the new possibilities opened up by high-throughput sequencing and metagenomic analysis to study emerging new diseases in domestic and wild animal populations, including honeybees.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several factors have recently converged, elevating the need for highly parallel diagnostic platforms that have the ability to detect many known, novel, and emerging pathogenic agents simultaneously. Panviral DNA microarrays represent the most robust approach for massively parallel viral surveillance and detection. The Virochip is a panviral DNA microarray that is capable of detecting all known viruses, as well as novel viruses related to known viral families, in a single assay and has been used to successfully identify known and novel viral agents in clinical human specimens. However, the usefulness and the sensitivity of the Virochip platform have not been tested on a set of clinical veterinary specimens with the high degree of genetic variance that is frequently observed with swine virus field isolates. In this report, we investigate the utility and sensitivity of the Virochip to positively detect swine viruses in both cell culture-derived samples and clinical swine samples. The Virochip successfully detected porcine reproductive and respiratory syndrome virus (PRRSV) in serum containing 6.10 × 10(2) viral copies per microliter and influenza A virus in lung lavage fluid containing 2.08 × 10(6) viral copies per microliter. The Virochip also successfully detected porcine circovirus type 2 (PCV2) in serum containing 2.50 × 10(8) viral copies per microliter and porcine respiratory coronavirus (PRCV) in turbinate tissue homogenate. Collectively, the data in this report demonstrate that the Virochip can successfully detect pathogenic viruses frequently found in swine in a variety of solid and liquid specimens, such as turbinate tissue homogenate and lung lavage fluid, as well as antemortem samples, such as serum.