3 resultados para Weingarten-type linear map
em Universidade Complutense de Madrid
Resumo:
In recent years, the topic of car-following has experimented an increased importance in traffic engineering and safety research. This has become a very interesting topic because of the development of driverless cars (Google driverless cars, http://en.wikipedia.org/wiki/Google_driverless_car). Driving models which describe the interaction between adjacent vehicles in the same lane have a big interest in simulation modeling, such as the Quick-Thinking-Driver model. A non-linear version of it can be given using the logistic map, and then chaos appears. We show that an infinite-dimensional version of the linear model presents a chaotic behaviour using the same approach as for studying chaos of death models of cell growth.
Resumo:
In this paper, we show that if X is a smooth variety of general type of dimension m≥3 for which the canonical map induces a triple cover onto Y, where Y is a projective bundle over P1 or onto a projective space or onto a quadric hypersurface, embedded by a complete linear series (except Q3 embedded in P4), then the general deformation of the canonical morphism of X is again canonical and induces a triple cover. The extremal case when Y is embedded as a variety of minimal degree is of interest, due to its appearance in numerous situations. For instance, by looking at threefolds Y of minimal degree we find components of the moduli of threefolds X of general type with KX3=3pg−9,KX3≠6, whose general members correspond to canonical triple covers. Our results are especially interesting as well because they have no lower dimensional analogues.
Resumo:
In this paper we show that if X is a smooth variety of general type of dimension m≥2 for which its canonical map induces a double cover onto Y, where Y is the projective space, a smooth quadric hypersurface or a smooth projective bundle over P1, embedded by a complete linear series, then the general deformation of the canonical morphism of X is again canonical and induces a double cover. The second part of the article proves the non-existence of canonical double structures on the rational varieties above mentioned. Our results have consequences for the moduli of varieties of general type of arbitrary dimension, since they show that infinitely many moduli spaces of higher dimensional varieties of general type have an entire “hyperelliptic” component. This is in sharp contrast with the case of curves or surfaces of lower Kodaira dimension.