2 resultados para Walrus
em Universidade Complutense de Madrid
Resumo:
BACKGROUND Herpesvirus and poxvirus can infect a wide range of species: herpesvirus genetic material has been detected and amplified in five species of the superfamily Pinnipedia; poxvirus genetic material, in eight species of Pinnipedia. To date, however, genetic material of these viruses has not been detected in walrus (Odobenus rosmarus), another marine mammal of the Pinnipedia clade, even though anti-herpesvirus antibodies have been detected in these animals. CASE PRESENTATION In February 2013, a 9-year-old healthy captive female Pacific walrus died unexpectedly at L'Oceanografic (Valencia, Spain). Herpesvirus was detected in pharyngeal tonsil tissue by PCR. Phylogenetic analysis revealed that the virus belongs to the subfamily Gammaherpesvirinae. Poxvirus was also detected by PCR in skin, pre-scapular and tracheobronchial lymph nodes and tonsils. Gross lesions were not detected in any tissue, but histopathological analyses of pharyngeal tonsils and lymph nodes revealed remarkable lymphoid depletion and lymphocytolysis. Similar histopathological lesions have been previously described in bovine calves infected with an alphaherpesvirus, and in northern elephant seals infected with a gammaherpesvirus that is closely related to the herpesvirus found in this case. Intracytoplasmic eosinophilic inclusion bodies, consistent with poxviral infection, were also observed in the epithelium of the tonsilar mucosa. CONCLUSION To our knowledge, this is the first molecular identification of herpesvirus and poxvirus in a walrus. Neither virus was likely to have contributed directly to the death of our animal.
Resumo:
BACKGROUND Monitoring body temperature is essential in veterinary care as minor variations may indicate dysfunction. Rectal temperature is widely used as a proxy for body temperature, but measuring it requires special equipment, training or restraining, and it potentially stresses animals. Infrared thermography is an alternative that reduces handling stress, is safer for technicians and works well for untrained animals. This study analysed thermal reference points in five marine mammal species: bottlenose dolphin (Tursiops truncatus); beluga whale (Delphinapterus leucas); Patagonian sea lion (Otaria flavescens); harbour seal (Phoca vitulina); and Pacific walrus (Odobenus rosmarus divergens). RESULTS The thermogram analysis revealed that the internal blowhole mucosa temperature is the most reliable indicator of body temperature in cetaceans. The temperatures taken during voluntary breathing with a camera held perpendicularly were practically identical to the rectal temperature in bottlenose dolphins and were only 1 °C lower than the rectal temperature in beluga whales. In pinnipeds, eye temperature appears the best parameter for temperature control. In these animals, the average times required for temperatures to stabilise after hauling out, and the average steady-state temperature values, differed according to species: Patagonian sea lions, 10 min, 31.13 °C; harbour seals, 10 min, 32.27 °C; Pacific walruses, 5 min, 29.93 °C. CONCLUSIONS The best thermographic and most stable reference points for monitoring body temperature in marine mammals are open blowhole in cetaceans and eyes in pinnipeds.