5 resultados para Visual search method
em Universidade Complutense de Madrid
Resumo:
Observations of cosmic rays arrival directions made with the Pierre Auger Observatory have previously provided evidence of anisotropy at the 99% CL using the correlation of ultra high energy cosmic rays (UHECRs) with objects drawn from the Veron-Cetty Veron catalog. In this paper we report on the use of three catalog independent methods to search for anisotropy. The 2pt-L, 2pt+ and 3pt methods, each giving a different measure of self-clustering in arrival directions, were tested on mock cosmic ray data sets to study the impacts of sample size and magnetic smearing on their results, accounting for both angular and energy resolutions. If the sources of UHECRs follow the same large scale structure as ordinary galaxies in the local Universe and if UHECRs are deflected no more than a few degrees, a study of mock maps suggests that these three method can efficiently respond to the resulting anisotropy with a P-value = 1.0% or smaller with data sets as few as 100 events. using data taken from January 1, 2004 to July 31, 2010 we examined the 20, 30, ... , 110 highest energy events with a corresponding minimum energy threshold of about 49.3 EeV. The minimum P-values found were 13.5% using the 2pt-L method, 1.0% using the 2pt+ method and 1.1% using the 3pt method for the highest 100 energy events. In view of the multiple (correlated) scans performed on the data set, these catalog-independent methods do not yield strong evidence of anisotropy in the highest energy cosmic rays.
Resumo:
Electromagnetic energy injected into the universe above a few hundred TeV is expected to pile up as γ radiation in a relatively narrow energy interval below 100 TeV due to its interaction with the 2.7^°K background radiation. We present an upper limit (90% C.L.) on the ratio of primary γ to charged cosmic rays in the energy interval 65–160 TeV (80–200 TeV) of 10.3 • 10^−3 (7.8 • 10^−3). Data from the HEGRA cosmic-ray detector complex consisting of a wide angle Čerenkov array (AIROBICC) measuring the lateral distribution of air Čerenkov light and a scintillator array, were used with a novel method to discriminate γ-ray and hadron induced air showers. If the presently unmeasured universal far infrared background radiation is not too intense, the result rules out a topological-defect origin of ultrahigh energy cosmic rays for masses of the X particle released by the defects equal to or larger than about 10^16 GeV.
Resumo:
The Surface Detector of the Pierre Auger Observatory is sensitive to neutrinos of all flavors above 0.1 EeV. These interact through charged and neutral currents in the atmosphere giving rise to extensive air showers. When interacting deeply in the atmosphere at nearly horizontal incidence, neutrinos can be distinguished from regular hadronic cosmic rays by the broad time structure of their shower signals in the water-Cherenkov detectors. In this paper we present for the first time an analysis based on down-going neutrinos. We describe the search procedure, the possible sources of background, the method to compute the exposure and the associated systematic uncertainties. No candidate neutrinos have been found in data collected from 1 January 2004 to 31 May 2010. Assuming an E-2 differential energy spectrum the limit on the single-flavor neutrino is E(2)dN/dE < 1.74 x 10(-7)GeVcm(-2)s(-1)sr(-1) at 90% C.L. in the energy range 1 x 10(17) eV < E < 1 x 10(20)eV.
Resumo:
Context. The young associations offer us one of the best opportunities to study the properties of young stellar and substellar objects and to directly image planets thanks to their proximity (<200 pc) and age (≈5−150 Myr). However, many previous works have been limited to identifying the brighter, more active members (≈1 M_⊙) owing to photometric survey sensitivities limiting the detections of lower mass objects. Aims. We search the field of view of 542 previously identified members of the young associations to identify wide or extremely wide (1000−100 000 au in physical separation) companions. Methods. We combined 2MASS near-infrared photometry (J, H, K) with proper motion values (from UCAC4, PPMXL, NOMAD) to identify companions in the field of view of known members. We collated further photometry and spectroscopy from the literature and conducted our own high-resolution spectroscopic observations for a subsample of candidate members. This complementary information allowed us to assess the efficiency of our method. Results. We identified 84 targets (45: 0.2−1.3 M_⊙, 17: 0.08−0.2 M_⊙, 22: <0.08 M_⊙) in our analysis, ten of which have been identified from spectroscopic analysis in previous young association works. For 33 of these 84, we were able to further assess their membership using a variety of properties (X-ray emission, UV excess, Hα, lithium and K I equivalent widths, radial velocities, and CaH indices). We derive a success rate of 76–88% for this technique based on the consistency of these properties. Conclusions. Once confirmed, the targets identified in this work would significantly improve our knowledge of the lower mass end of the young associations. Additionally, these targets would make an ideal new sample for the identification and study of planets around nearby young stars. Given the predicted substellar mass of the majority of these new candidate members and their proximity, high-contrast imaging techniques would facilitate the search for new low-mass planets.
Resumo:
PURPOSE: The objective of this study was to evaluate, by halometry and under low illumination conditions, the effects of short-wavelength light absorbance filters on visual discrimination capacity in retinitis pigmentosa patients. METHODS: This was an observational, prospective, analytic, and transversal study on 109 eyes of 57 retinitis pigmentosa patients with visual acuity better than 1.25 logMAR. Visual disturbance index (VDI) was determined using the software Halo 1.0, with and without the interposition of filters which absorb (totally or partially) short-wavelength light between 380 and 500 nm. RESULTS: A statistically significant reduction in the VDI values determined using filters which absorb short-wavelength light was observed (p < 0.0001). The established VDIs in patients with VA logMAR <0.4 were 0.30 ± 0.05 (95% CI, 0.26–0.36) for the lens alone, 0.20 ± 0.04 (95% CI, 0.16–0.24) with the filter that completely absorbs wavelengths shorter than 450 nm, and 0.24 ± 0.04 (95% CI, 0.20–0.28) with the filter that partially absorbs wavelengths shorter than 450 nm, which implies a 20 to 33% visual discrimination capacity increase. In addition, a decrease of VDI in at least one eye was observed in more than 90% of patients when using a filter. CONCLUSIONS: Short-wavelength light absorbance filters increase visual discrimination capacity under low illumination conditions in retinitis pigmentosa patients. Use of such filters constitutes a suitable method to improve visual quality related to intraocular light visual disturbances under low illumination conditions in this group of patients. © 2016 American Academy of Optometry