3 resultados para Variants of FSGS
em Universidade Complutense de Madrid
Resumo:
Fixed-step-size (FSS) and Bayesian staircases are widely used methods to estimate sensory thresholds in 2AFC tasks, although a direct comparison of both types of procedure under identical conditions has not previously been reported. A simulation study and an empirical test were conducted to compare the performance of optimized Bayesian staircases with that of four optimized variants of FSS staircase differing as to up-down rule. The ultimate goal was to determine whether FSS or Bayesian staircases are the best choice in experimental psychophysics. The comparison considered the properties of the estimates (i.e. bias and standard errors) in relation to their cost (i.e. the number of trials to completion). The simulation study showed that mean estimates of Bayesian and FSS staircases are dependable when sufficient trials are given and that, in both cases, the standard deviation (SD) of the estimates decreases with number of trials, although the SD of Bayesian estimates is always lower than that of FSS estimates (and thus, Bayesian staircases are more efficient). The empirical test did not support these conclusions, as (1) neither procedure rendered estimates converging on some value, (2) standard deviations did not follow the expected pattern of decrease with number of trials, and (3) both procedures appeared to be equally efficient. Potential factors explaining the discrepancies between simulation and empirical results are commented upon and, all things considered, a sensible recommendation is for psychophysicists to run no fewer than 18 and no more than 30 reversals of an FSS staircase implementing the 1-up/3-down rule.
Resumo:
Variants of adaptive Bayesian procedures for estimating the 5% point on a psychometric function were studied by simulation. Bias and standard error were the criteria to evaluate performance. The results indicated a superiority of (a) uniform priors, (b) model likelihood functions that are odd symmetric about threshold and that have parameter values larger than their counterparts in the psychometric function, (c) stimulus placement at the prior mean, and (d) estimates defined as the posterior mean. Unbiasedness arises in only 10 trials, and 20 trials ensure constant standard errors. The standard error of the estimates equals 0.617 times the inverse of the square root of the number of trials. Other variants yielded bias and larger standard errors.
Resumo:
Current interest in measuring quality of life is generating interest in the construction of computerized adaptive tests (CATs) with Likert-type items. Calibration of an item bank for use in CAT requires collecting responses to a large number of candidate items. However, the number is usually too large to administer to each subject in the calibration sample. The concurrent anchor-item design solves this problem by splitting the items into separate subtests, with some common items across subtests; then administering each subtest to a different sample; and finally running estimation algorithms once on the aggregated data array, from which a substantial number of responses are then missing. Although the use of anchor-item designs is widespread, the consequences of several configuration decisions on the accuracy of parameter estimates have never been studied in the polytomous case. The present study addresses this question by simulation, comparing the outcomes of several alternatives on the configuration of the anchor-item design. The factors defining variants of the anchor-item design are (a) subtest size, (b) balance of common and unique items per subtest, (c) characteristics of the common items, and (d) criteria for the distribution of unique items across subtests. The results of this study indicate that maximizing accuracy in item parameter recovery requires subtests of the largest possible number of items and the smallest possible number of common items; the characteristics of the common items and the criterion for distribution of unique items do not affect accuracy.