1 resultado para Vanishing Theorems
em Universidade Complutense de Madrid
Filtro por publicador
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Aberystwyth University Repository - Reino Unido (1)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- Adam Mickiewicz University Repository (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (5)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (4)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (21)
- Archive of European Integration (2)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (13)
- Aston University Research Archive (8)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (17)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (33)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (4)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (31)
- Brock University, Canada (3)
- Brunel University (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (57)
- CaltechTHESIS (15)
- Cambridge University Engineering Department Publications Database (18)
- CentAUR: Central Archive University of Reading - UK (34)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (25)
- Cochin University of Science & Technology (CUSAT), India (19)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- CUNY Academic Works (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (2)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (2)
- Digital Commons - Michigan Tech (3)
- Digital Commons at Florida International University (1)
- DigitalCommons@The Texas Medical Center (3)
- DigitalCommons@University of Nebraska - Lincoln (3)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (3)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Greenwich Academic Literature Archive - UK (2)
- Harvard University (1)
- Helda - Digital Repository of University of Helsinki (7)
- Indian Institute of Science - Bangalore - Índia (79)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico do Porto, Portugal (1)
- Massachusetts Institute of Technology (7)
- Memoria Académica - FaHCE, UNLP - Argentina (5)
- Ministerio de Cultura, Spain (2)
- National Center for Biotechnology Information - NCBI (6)
- Nottingham eTheses (5)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- Portal de Revistas Científicas Complutenses - Espanha (2)
- Publishing Network for Geoscientific & Environmental Data (3)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (26)
- Queensland University of Technology - ePrints Archive (12)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (2)
- Repositorio Académico de la Universidad Nacional de Costa Rica (1)
- Repositório Científico da Universidade de Évora - Portugal (3)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (5)
- Repositório Institucional da Universidade de Aveiro - Portugal (6)
- Repositório Institucional da Universidade de Brasília (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (85)
- Repositorio Institucional Universidad EAFIT - Medelin - Colombia (1)
- Research Open Access Repository of the University of East London. (1)
- Royal College of Art Research Repository - Uninet Kingdom (1)
- RU-FFYL. Repositorio de la Facultad de Filosofiía y Letras. UNAM. - Mexico (1)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Universidad de Alicante (5)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (8)
- Universidade Complutense de Madrid (1)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Universidade Federal do Pará (3)
- Universidade Federal do Rio Grande do Norte (UFRN) (13)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (6)
- Université de Montréal, Canada (23)
- Université Laval Mémoires et thèses électroniques (1)
- University of Connecticut - USA (1)
- University of Michigan (15)
- University of Queensland eSpace - Australia (11)
- University of Southampton, United Kingdom (8)
- University of Washington (1)
Resumo:
We introduce a new class of generalized isotropic Lipkin–Meshkov–Glick models with su(m+1) spin and long-range non-constant interactions, whose non-degenerate ground state is a Dicke state of su(m+1) type. We evaluate in closed form the reduced density matrix of a block of Lspins when the whole system is in its ground state, and study the corresponding von Neumann and Rényi entanglement entropies in the thermodynamic limit. We show that both of these entropies scale as a log L when L tends to infinity, where the coefficient a is equal to (m − k)/2 in the ground state phase with k vanishing magnon densities. In particular, our results show that none of these generalized Lipkin–Meshkov–Glick models are critical, since when L-->∞ their Rényi entropy R_q becomes independent of the parameter q. We have also computed the Tsallis entanglement entropy of the ground state of these generalized su(m+1) Lipkin–Meshkov–Glick models, finding that it can be made extensive by an appropriate choice of its parameter only when m-k≥3. Finally, in the su(3) case we construct in detail the phase diagram of the ground state in parameter space, showing that it is determined in a simple way by the weights of the fundamental representation of su(3). This is also true in the su(m+1) case; for instance, we prove that the region for which all the magnon densities are non-vanishing is an (m + 1)-simplex in R^m whose vertices are the weights of the fundamental representation of su(m+1).