9 resultados para VISUAL ACUITY
em Universidade Complutense de Madrid
Resumo:
Purpose.: To determine photopic and mesopic distance high-contrast visual acuity (HC-VA) and low-contrast visual acuity (LC-VA) in eyes with early age-related macular degeneration (AMD). Methods.: Measurements were made in 22 subjects with early AMD and 28 healthy control subjects. Inclusion criteria included a photopic HC-VA of 20/25 or better. Distance VA was measured using HC (96%) and LC (10%) Bailey-Lovie logMAR letter charts under photopic (85 cd/m2) and mesopic (0.1–0.2 cd/m2) luminance conditions. Results.: Mean mesopic distance HC-VA and LC-VA were significantly worse (0.1 logMAR and 0.28 logMAR, respectively) in the early AMD group than in the control group. Under mesopic conditions, the mean difference between LC-VA and HC-VA was significantly greater in the early AMD (0.45 logMAR) than the control group (0.27 logMAR). Mean differences between mesopic versus photopic HC-VA and mesopic versus photopic LC-VA were significantly greater in the early AMD than the control group (0.13 and 0.32 logMAR of difference between the means, respectively). Sensitivity and specificity were significantly greater for mesopic LC-VA than for mesopic HC-VA (Receiver Operating Characteristics, area under the curve [AUC], 0.94 ± 0.030 and 0.76 ± 0.067, respectively). AUC values for photopic HC-VA and LC-VA were below 0.70. Conclusions.: Visual acuity testing under low luminance conditions emerged as an optimal quantitative measure of retinal function in early AMD.
Resumo:
We propose in this work a model for describing visual acuity (VV) as a function of defocus and pupil diameter. Although the model is mainly based on geometrical optics, it also incorporates nongeometrical effects phenomenologically. Compared to similar visual acuity models, the proposed one considers the effect of astigmatism and the variability of best corrected VV among individuals; it also takes into account the accommodation and the “tolerance to defocus,” the latter through a phenomenological parameter. We have fitted the model to the VV data provided in the works of Holladay et al. and Peters, showing the ability of this model to accurately describe the variation of VV against blur and pupil diameter. We have also performed a comparison between the proposed model and others previously published in the literature. The model is mainly intended for use in the design of ophthalmic compensations, but it can also be useful in other fields such as visual ergonomics, design of visual tests, and optical instrumentation.
Resumo:
PURPOSE: The objective of this study was to evaluate, by halometry and under low illumination conditions, the effects of short-wavelength light absorbance filters on visual discrimination capacity in retinitis pigmentosa patients. METHODS: This was an observational, prospective, analytic, and transversal study on 109 eyes of 57 retinitis pigmentosa patients with visual acuity better than 1.25 logMAR. Visual disturbance index (VDI) was determined using the software Halo 1.0, with and without the interposition of filters which absorb (totally or partially) short-wavelength light between 380 and 500 nm. RESULTS: A statistically significant reduction in the VDI values determined using filters which absorb short-wavelength light was observed (p < 0.0001). The established VDIs in patients with VA logMAR <0.4 were 0.30 ± 0.05 (95% CI, 0.26–0.36) for the lens alone, 0.20 ± 0.04 (95% CI, 0.16–0.24) with the filter that completely absorbs wavelengths shorter than 450 nm, and 0.24 ± 0.04 (95% CI, 0.20–0.28) with the filter that partially absorbs wavelengths shorter than 450 nm, which implies a 20 to 33% visual discrimination capacity increase. In addition, a decrease of VDI in at least one eye was observed in more than 90% of patients when using a filter. CONCLUSIONS: Short-wavelength light absorbance filters increase visual discrimination capacity under low illumination conditions in retinitis pigmentosa patients. Use of such filters constitutes a suitable method to improve visual quality related to intraocular light visual disturbances under low illumination conditions in this group of patients. © 2016 American Academy of Optometry
Resumo:
Background In recent years new models of intraocular lenses are appearing on the market to reduce requirements for additional optical correction. The purpose of this study is to assess visual outcomes following bilateral cataract surgery and the implant of a FineVision® trifocal intraocular lens (IOL). Methods Prospective, nonrandomized, observational study. Vision was assessed in 44 eyes of 22 patients (mean age 68.4 ± 5.5 years) before and 3 months after surgery. Aberrations were determined using the Topcon KR-1 W wave-front analyzer. LogMAR visual acuity was measured at distance (corrected distance visual acuity, CDVA 4 m), intermediate (distance corrected intermediate visual acuity, DCIVA 60 cm) and near (distance corrected near visual acuity, DCNVA 40 cm). The Pelli-Robson letter chart and the CSV-1000 test were used to estimate contrast sensitivity (CS). Defocus curve testing was performed in photopic and mesopic conditions. Adverse photic phenomena were assessed using the Halo v1.0 program. Results Mean aberration values for a mesopic pupil diameter were: total HOA RMS: 0.41 ± 0.30 μm, coma: 0.32 ± 0.22 μm and spherical aberration: 0.21 ± 0.20 μm. Binocular logMAR measurements were: CDVA −0.05 ± 0.05, DCIVA 0.15 ± 0.10, and DCNVA 0.06 ± 0.10. Mean Pelli-Robson CS was 1.40 ± 0.14 log units. Mean CSV100 CS for the 4 frequencies examined (A: 3 cycles/degree (cpd), B: 6 cpd, C: 12 cpd, D: 18 cpd) were 1.64 ± 0.14, 1.77 ± 0.18, 1.44 ± 0.24 and 0.98 ± 0.24 log units, respectively. Significant differences were observed in defocus curves for photopic and mesopic conditions (p < 0.0001). A mean disturbance index of 0.28 ± 0.22 was obtained. Conclusions Bilateral FineVision IOL implant achieved a full range of adequate vision, satisfactory contrast sensitivity, and a lack of significant adverse photic phenomena. Trial registration Eudract Clinical Trials Registry Number: 2014-003266-2.
Resumo:
PURPOSE: To evaluate visual results with two multifocal diffractive lenses designed with the same platform but with different additions. SETTING: Grupo Innova Ocular clinics. METHODS: A total of 50 eyes from 50 patients were included. Group 1 (n = 25) was implanted with the TECNIS® 1 ZLB +3.25 and group 2 (n = 25) with the TECNIS® 1 ZKB +2.75. Patients were assessed at 24 hours, 1 week and 1 month postoperatively. At surgical discharge, corrected (CDVA) and uncorrected distance visual acuity (UCDVA), near visual acuity (VA) at 25, 40 and 80 cm, visual quality and the defocus curve were measured. RESULTS: Changes in sphere and spherical equivalent were statistically significant (p<0.01) in both groups at 1 week and 1 month compared to preoperative values. In group 1, UCDVA logMAR at 1 month was 0.06 ± 0.02. In group 2, UCDVA at 1 month was 0.03 ± 0.03. In near vision, the TECNIS® 1 ZLB group obtained a VA logMAR of 0.35 ± 0.02 at 25 cm, 0.13 ± 0.02 at 40 cm and 0.27 ± 0.02 at 80 cm, while in the TECNIS® 1 ZKB group, the values were 0.38 ± 0.03, 0.14 ± 0.03 and 0.23 ± 0.06, respectively. No statistically significant differences were found either when results for visual quality were compared. CONCLUSION: Both the TECNIS® 1 ZLB and TECNIS® 1 ZKB are excellent options for obtaining good distance and near vision, in addition to providing good intermediate vision, especially at distances such as those required for working with computers.
Resumo:
The purpose of this paper is to conduct a review of studies on cystoid macular edema published in the last seven years. Cystoid macular edema is a major cause of loss of visual acuity. It is the final common pathway of many diseases and can be caused by numerous processes including inflammatory, vascular, adverse drug reactions, retinal dystrophy or intraocular tumors. These processes disrupt the blood-retinal barrier, with fluid extravasation to the macular parenchyma. Imaging tests are essential for both detection and monitoring of this pathology. Fluorescein angiography and autofluorescence show the leakage of liquid from perifoveal vessels into the tissue where it forms cystic spaces. Optical coherence tomography is currently the gold standard technique for diagnosis and monitoring. This allows objective measurement of retinal thickness, which correlates with visual acuity and provides more complete morphological information. Based on the underlying etiology, the therapeutic approach can be either surgical or medical with anti-inflammatory drugs. We found that disruption of the blood-retinal barrier for various reasons is the key point in the pathogenesis of cystoid macular edema, therefore we believe that studies on its treatment should proceed on this path.
Resumo:
PURPOSE: To compare disk halo size in response to a glare source in eyes with an aspheric apodized diffractive multifocal intraocular lens (IOL) or aspheric monofocal IOL. SETTING: Rementeria Ophthalmological Clinic, Madrid, Spain. DESIGN: Prospective randomized masked study. METHOD: Halo radius was measured using a vision monitor (MonCv3) with low-luminance optotypes in eyes that had cataract surgery and bilateral implantion of an Acrysof Restor SN6AD1 multifocal IOL or Acrysof IQ monofocal IOL 6 to 9 months previously. The visual angle subtended by the disk halo radius was calculated in minutes of arc (arcmin). Patient complaints of halo disturbances were recorded. Monocular uncorrected distance visual acutity (UDVA) and corrected distance visual acuity (CDVA) were measured using high-contrast (96%) and low-contrast (10%) logMAR letter charts. RESULTS: The study comprised 39 eyes of 39 subjects (aged 70 to 80 years); 21 eyes had a multifocal IOL and 18 eyes a monofocal IOL. The mean halo radius was 35 arcmin larger in the multifocal IOL group than the monofocal group (P<.05). Greater halo effects were reported in the multifocal IOL group (P<.05). The mean monocular high-contrast UDVA and low-contrast UDVA did not vary significantly between groups, whereas the mean monocular high-contrast CDVA and low-contrast CDVA were significantly worse at 0.12 logMAR and 0.13 logMAR in the multifocal than in the monofocal IOL group, respectively (P <.01). A significant positive correlation was detected by multiple linear regression between the halo radius and low-contrast UDVA in the multifocal IOL group (r = 0.72, P<.001). CONCLUSIONS: The diffractive multifocal IOL gave rise to a larger disk halo size, which was correlated with a worse low-contrast UDVA.
Resumo:
PURPOSE: To compare visual outcomes, rotational stability, and centration in a randomized controlled trial in patients undergoing cataract surgery who were bilaterally implanted with two different trifocal intraocular lenses (IOLs) with a similar optical zone but different haptic shape. METHODS: Twenty-one patients (42 eyes) with cataract and less than 1.50 D of corneal astigmatism underwent implantation of one FineVision/MicoF IOL in one eye and one POD FineVision IOL in the contralateral eye (PhysIOL, Liège, Belgium) at IOA Madrid Innova Ocular, Madrid, Spain. IOL allocation was random. Outcome measures, all evaluated 3 months postoperatively, included monocular and binocular uncorrected distance (UDVA), corrected distance (CDVA), distance-corrected intermediate (DCIVA), and near (DCNVA) visual acuity (at 80, 40, and 25 cm) under photopic conditions, refraction, IOL centration, haptic rotation, dysphotopsia, objective quality of vision and aberration quantification, patient satisfaction, and spectacle independence. RESULTS: Three months postoperatively, mean monocular UDVA, CDVA, DCIVA, and DCNVA (40 cm) under photopic conditions were 0.04 ± 0.07, 0.01 ± 0.04, 0.15 ± 0.11, and 0.16 ± 0.08 logMAR for the eyes implanted with the POD FineVision IOL and 0.03 ± 0.05, 0.01 ± 0.02, 0.17 ± 0.12, and 0.14 ± 0.08 logMAR for those receiving the FineVision/MicroF IOL. Moreover, the POD FineVision IOL showed similar centration (P > .05) and better rotational stability (P < .05) than the FineVision/MicroF IOL. Regarding halos, there was a minimal but statistically significant difference, obtaining better results with FineVision/MicroF. Full spectacle independence was reported by all patients. CONCLUSIONS: This study revealed similar visual outcomes for both trifocal IOLs under test (POD FineVision and FineVision/MicroF). However, the POD FineVision IOL showed better rotational stability, as afforded by its design.
Resumo:
Purpose: the aim of this pilot study was to test whether retinitis pigmentosa patients would benefit from filter contact lenses as an effective optical aid against glare and photophobia. Methods: fifteen subjects with retinitis pigmentosa were enrolled in this study. All of them were evaluated with filter soft contact lenses (MaxSight), filter glasses (CPF 527) and without filters (control). All patients were assessed for the three aid conditions by means of best corrected visual acuity (BCVA), contrast sensitivity (without glare and with central and peripheral glare)(CSV-1000) and a specific subjective questionnaire about quality of vision. Results: BCVA was slightly better with filters than without filter but the differences were not statistically significant. Contrast sensitivity without glare improved significantly with the contact lenses (p<0.05). The central glare had significant differences for the frequencies of 3 cpd and 18 cpd between the contact lens filter and the control group (p=0.021 and p=0.044, respectively). For the peripheral glare contrast sensitivity improved with contact lens versus control group for highest frequencies, 12 and 18 cpd (p<0.001 and p=0.045, respectively). According to the questionnaire the contact lens filter gave them more visual comfort than the glasses filter under the scenarios of indoors glare, outdoors activities and indoors comfort. Conclusion: the filter contact lenses seem to be a good option to improve the quality of vision of patients with retinitis pigmentosa.