5 resultados para UNIVARIATE DISTRIBUTIONS
em Universidade Complutense de Madrid
Resumo:
This paper studies the change-point problem for a general parametric, univariate or multivariate family of distributions. An information theoretic procedure is developed which is based on general divergence measures for testing the hypothesis of the existence of a change. For comparing the exact sizes of the new test-statistic using the criterion proposed in Dale (J R Stat Soc B 48–59, 1986), a simulation study is performed for the special case of exponentially distributed random variables. A complete study of powers of the test-statistics and their corresponding relative local efficiencies, is also considered.
Resumo:
We study the sample-to-sample fluctuations of the overlap probability densities from large-scale equilibrium simulations of the three-dimensional Edwards-Anderson spin glass below the critical temperature. Ultrametricity, stochastic stability, and overlap equivalence impose constraints on the moments of the overlap probability densities that can be tested against numerical data. We found small deviations from the Ghirlanda Guerra predictions, which get smaller as system size increases. We also focus on the shape of the overlap distribution, comparing the numerical data to a mean-field-like prediction in which finite-size effects are taken into account by substituting delta functions with broad peaks.
Resumo:
Using the results of large scale numerical simulations we study the probability distribution of the pseudo critical temperature for the three dimensional Edwards Anderson Ising spin glass and for the fully connected Sherrington-Kirkpatrick model. We find that the behaviour of our data is nicely described by straightforward finitesize scaling relations.
Resumo:
Aims. We study in detail nine sources in the direction of the young σ Orionis cluster, which is considered to be a unique site for studying stellar and substellar formation. The nine sources were selected because of their peculiar properties, such as extremely-red infrared colours or excessively strong Hα emission for their blue optical colours. Methods. We acquired high-quality, low-resolution spectroscopy (R ∼ 500) of the nine targets with ALFOSC at the Nordic Optical Telescope. We also re-analysed [24]-band photometry from MIPS/Spitzer and compiled the highest quality photometric dataset available at the ViJHK_s passbands and the four IRAC/Spitzer channels, for constructing accurate spectral energy distributions between 0.55 and 24 μm. Results. The nine targets were classified into: one Herbig Ae/Be star with a scattering edge-on disc; two G-type stars; one X-ray flaring, early-M, young star with chromospheric Hα emission; one very low-mass, accreting, young spectroscopic binary; two young objects at the brown-dwarf boundary with the characteristics of classical T Tauri stars; and two emission-line galaxies, one undergoing star formation, and another whose spectral energy distribution is dominated by an active galactic nucleus. We also discovered three infrared sources associated with overdensities in a cold cloud of the cluster centre. Conclusions. Low-resolution spectroscopy and spectral energy distributions are a vital tool for measuring the physical properties and evolution of young stars and candidates in the σ Orionis cluster.
Resumo:
Polygonal Fresnel zone plates can be configured in a variety of forms depending on the number of sides of the polygon and the number of phase steps used. This contribution deals with some specific polygonal designs that tessellate the plane: triangles, squares, and hexagons. The phase distribution is chosen as a continuous one to form a polygonal kinoform. The selected designs have been simulated and its behaviour compared. Although their performance is worse than the circular Fresnel plate, they may present some other advantages as the tessellation capability, and the possibility to fabricate them as extruded profiles.