2 resultados para Two parameter

em Universidade Complutense de Madrid


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single-molecule manipulation experiments of molecular motors provide essential information about the rate and conformational changes of the steps of the reaction located along the manipulation coordinate. This information is not always sufficient to define a particular kinetic cycle. Recent single-molecule experiments with optical tweezers showed that the DNA unwinding activity of a Phi29 DNA polymerase mutant presents a complex pause behavior, which includes short and long pauses. Here we show that different kinetic models, considering different connections between the active and the pause states, can explain the experimental pause behavior. Both the two independent pause model and the two connected pause model are able to describe the pause behavior of a mutated Phi29 DNA polymerase observed in an optical tweezers single-molecule experiment. For the two independent pause model all parameters are fixed by the observed data, while for the more general two connected pause model there is a range of values of the parameters compatible with the observed data (which can be expressed in terms of two of the rates and their force dependencies). This general model includes models with indirect entry and exit to the long-pause state, and also models with cycling in both directions. Additionally, assuming that detailed balance is verified, which forbids cycling, this reduces the ranges of the values of the parameters (which can then be expressed in terms of one rate and its force dependency). The resulting model interpolates between the independent pause model and the indirect entry and exit to the long-pause state model

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The standard difference model of two-alternative forced-choice (2AFC) tasks implies that performance should be the same when the target is presented in the first or the second interval. Empirical data often show “interval bias” in that percentage correct differs significantly when the signal is presented in the first or the second interval. We present an extension of the standard difference model that accounts for interval bias by incorporating an indifference zone around the null value of the decision variable. Analytical predictions are derived which reveal how interval bias may occur when data generated by the guessing model are analyzed as prescribed by the standard difference model. Parameter estimation methods and goodness-of-fit testing approaches for the guessing model are also developed and presented. A simulation study is included whose results show that the parameters of the guessing model can be estimated accurately. Finally, the guessing model is tested empirically in a 2AFC detection procedure in which guesses were explicitly recorded. The results support the guessing model and indicate that interval bias is not observed when guesses are separated out.