3 resultados para Topologies on an arbitrary set
em Universidade Complutense de Madrid
Resumo:
El presente trabajo consiste en dos partes diferenciadas: la principal de ellas (Cap tulos 1 y 2) est a dedicada a introducir estructura adicional en grupos que aparecen de manera natural en el contexto de la teor a de la forma. En la segunda parte (Cap tulo 3), se plantea c omo generalizar la teor a de espacios recubridores y, en particular, se propone una l nea de trabajo relacionada con la teor a de la forma. El punto de partida de esta tesis doctoral son los trabajos [25, 26, 68, 69, 70] en los que los autores introducen y utilizan algunas ultram etricas en el conjunto de los mor smos shape entre dos espacios topol ogicos punteados. En particular, si el dominio es (S1; 1); la construcci on realizada en [68] permite explicitar una ultram etrica en el grupo shape 1(X; x0) de un espacio m etrico compacto X; como ya fue observado en [69] y [80]. Si el espacio no es m etrico compacto, la construcci on nos lleva a utilizar el concepto de ultram etrica generalizada, en el sentido de Priess-Crampe y Ribenboim [78, 79]. En [7], D. K. Biss introduce la idea de topologizar el grupo fundamental de un espacio, de forma que la topolog a en 1(X; x0) sea una topolog a de grupo que permita detectar la (no) existencia de un recubridor universal para X: La forma de proceder sugerida es tomar en 1(X; x0)la toplog a cociente inducida por la topolog a compacto-abierta en el espacio de lazos (X; x0): Sin embargo, hay algunos errores en el art culo mencionado: en concreto, el error relacionado con el presente trabajo fue puesto de mani esto por P. Fabel en [33], mostrando que, en general, la operaci on de grupo en 1(X; x0)con la topolog a cociente no es continua. Utilizando un punto de vista similar, varios autores han tratado de dotar al grupo fundamental con una topolog a, de forma que 1(X; x0) sea un grupo topol ogico y la proyecci on q (X; x0){u100000} 1(X; x0)sea continua...
Resumo:
In the context of real-valued functions defined on metric spaces, it is known that the locally Lipschitz functions are uniformly dense in the continuous functions and that the Lipschitz in the small functions - the locally Lipschitz functions where both the local Lipschitz constant and the size of the neighborhood can be chosen independent of the point - are uniformly dense in the uniformly continuous functions. Between these two basic classes of continuous functions lies the class of Cauchy continuous functions, i.e., the functions that map Cauchy sequences in the domain to Cauchy sequences in the target space. Here, we exhibit an intermediate class of Cauchy continuous locally Lipschitz functions that is uniformly dense in the real-valued Cauchy continuous functions. In fact, our result is valid when our target space is an arbitrary Banach space.
Resumo:
Let S(M) be the ring of (continuous) semialgebraic functions on a semialgebraic set M and S*(M) its subring of bounded semialgebraic functions. In this work we compute the size of the fibers of the spectral maps Spec(j)1:Spec(S(N))→Spec(S(M)) and Spec(j)2:Spec(S*(N))→Spec(S*(M)) induced by the inclusion j:N M of a semialgebraic subset N of M. The ring S(M) can be understood as the localization of S*(M) at the multiplicative subset WM of those bounded semialgebraic functions on M with empty zero set. This provides a natural inclusion iM:Spec(S(M)) Spec(S*(M)) that reduces both problems above to an analysis of the fibers of the spectral map Spec(j)2:Spec(S*(N))→Spec(S*(M)). If we denote Z:=ClSpec(S*(M))(M N), it holds that the restriction map Spec(j)2|:Spec(S*(N)) Spec(j)2-1(Z)→Spec(S*(M)) Z is a homeomorphism. Our problem concentrates on the computation of the size of the fibers of Spec(j)2 at the points of Z. The size of the fibers of prime ideals "close" to the complement Y:=M N provides valuable information concerning how N is immersed inside M. If N is dense in M, the map Spec(j)2 is surjective and the generic fiber of a prime ideal p∈Z contains infinitely many elements. However, finite fibers may also appear and we provide a criterium to decide when the fiber Spec(j)2-1(p) is a finite set for p∈Z. If such is the case, our procedure allows us to compute the size s of Spec(j)2-1(p). If in addition N is locally compact and M is pure dimensional, s coincides with the number of minimal prime ideals contained in p. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.