2 resultados para Topological properties
em Universidade Complutense de Madrid
Resumo:
We investigate some topological properties, in particular formality, of compact Sasakian manifolds. Answering some questions raised by Boyer and Galicki, we prove that all higher (than three) Massey products on any compact Sasakian manifold vanish. Hence, higher Massey products do obstruct Sasakian structures. Using this, we produce a method of constructing simply connected K-contact non-Sasakian manifolds. On the other hand, for every n > 3, we exhibit the first examples of simply connected compact Sasakian manifolds of dimension 2n + 1 that are non-formal. They are non-formal because they have a non-zero triple Massey product. We also prove that arithmetic lattices in some simple Lie groups cannot be the fundamental group of a compact Sasakian manifold.
Resumo:
The class of all locally quasi-convex (lqc) abelian groups contains all locally convex vector spaces (lcs) considered as topological groups. Therefore it is natural to extend classical properties of locally convex spaces to this larger class of abelian topological groups. In the present paper we consider the following well known property of lcs: “A metrizable locally convex space carries its Mackey topology ”. This claim cannot be extended to lqc-groups in the natural way, as we have recently proved with other coauthors (Außenhofer and de la Barrera Mayoral in J Pure Appl Algebra 216(6):1340–1347, 2012; Díaz Nieto and Martín Peinador in Descriptive Topology and Functional Analysis, Springer Proceedings in Mathematics and Statistics, Vol 80 doi:10.1007/978-3-319-05224-3_7, 2014; Dikranjan et al. in Forum Math 26:723–757, 2014). We say that an abelian group G satisfies the Varopoulos paradigm (VP) if any metrizable locally quasi-convex topology on G is the Mackey topology. In the present paper we prove that in any unbounded group there exists a lqc metrizable topology that is not Mackey. This statement (Theorem C) allows us to show that the class of groups satisfying VP coincides with the class of finite exponent groups. Thus, a property of topological nature characterizes an algebraic feature of abelian groups.