3 resultados para Thermodynamic consistency

em Universidade Complutense de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spin glasses are a longstanding model for the sluggish dynamics that appear at the glass transition. However, spin glasses differ from structural glasses in a crucial feature: they enjoy a time reversal symmetry. This symmetry can be broken by applying an external magnetic field, but embarrassingly little is known about the critical behavior of a spin glass in a field. In this context, the space dimension is crucial. Simulations are easier to interpret in a large number of dimensions, but one must work below the upper critical dimension (i.e., in d < 6) in order for results to have relevance for experiments. Here we show conclusive evidence for the presence of a phase transition in a four-dimensional spin glass in a field. Two ingredients were crucial for this achievement: massive numerical simulations were carried out on the Janus special-purpose computer, and a new and powerful finite-size scaling method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examine the predictive ability and consistency properties of exchange rate expectations for the dollar/euro using a survey conducted in Spain by PwC among a panel of experts and entrepreneurs. Our results suggest that the PwC panel have some forecasting ability for time horizons from 3 to 9 months, although only for the 3-month ahead expectations we obtain marginal evidence of unbiasedness and efficiency in the forecasts. As for the consistency properties of the exchange rate expectations formation process, we find that survey participants form stabilising expectations in the short-run and destabilising expectations in the long- run and that the expectation formation process is closer to fundamentalists than chartists.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyze the entropy production and the maximal extractable work from a squeezed thermal reservoir. The nonequilibrium quantum nature of the reservoir induces an entropy transfer with a coherent contribution while modifying its thermal part, allowing work extraction from a single reservoir, as well as great improvements in power and efficiency for quantum heat engines. Introducing a modified quantum Otto cycle, our approach fully characterizes operational regimes forbidden in the standard case, such as refrigeration and work extraction at the same time, accompanied by efficiencies equal to unity.