4 resultados para The Spherical Bag Approximation
em Universidade Complutense de Madrid
Resumo:
In TJ-II stellarator plasmas, in the electron cyclotron heating regime, an increase in the ion temperature is observed, synchronized with that of the electron temperature, during the transition to the core electron-root confinement (CERC) regime. This rise in ion temperature should be attributed to the joint action of the electron–ion energy transfer (which changes slightly during the CERC formation) and an enhancement of the ion confinement. This improvement must be related to the increase in the positive electric field in the core region. In this paper, we confirm this hypothesis by estimating the ion collisional transport in TJ-II under the physical conditions established before and after the transition to CERC. We calculate a large number of ion orbits in the guiding-centre approximation considering the collisions with a background plasma composed of electrons and ions. The ion temperature profile and the thermal flux are calculated in a self-consistent way, so that the change in the ion heat transport can be assessed.
Resumo:
Optical potentials provide critical input for calculations on a wide variety of nuclear reactions, in particular, for neutrino-nucleus reactions, which are of great interest in the light of the new neutrino oscillation experiments. We present the global relativistic folding optical potential (GRFOP) fits to elastic proton scattering data from C-12 nucleus at energies between 20 and 1040 MeV. We estimate observables, such as the differential cross section, the analyzing power, and the spin rotation parameter, in elastic proton scattering within the relativistic impulse approximation. The new GRFOP potential is employed within the relativistic Green's function model for inclusive quasielastic electron scattering and for (anti) neutrino-nucleus scattering at MiniBooNE kinematics.
Resumo:
We study electron dynamics in a two-band δ-doped semiconductor within the envelope-function approximation. Using a simple parametrization of the confining potential arising from the ionized donors in the δ -doping layer, we are able to find exact solutions of the Dirac-type equation describing the coupling of host bands. As an application we then consider Si δ -doped GaAs. In particular we find that the ground subband energy scales as a power law of the Si concentration per unit area in a wide range of doping levels. In addition, the coupling of host bands leads to a depression of the subband energy due to nonparabolicity effects.
Resumo:
In the context of real-valued functions defined on metric spaces, it is known that the locally Lipschitz functions are uniformly dense in the continuous functions and that the Lipschitz in the small functions - the locally Lipschitz functions where both the local Lipschitz constant and the size of the neighborhood can be chosen independent of the point - are uniformly dense in the uniformly continuous functions. Between these two basic classes of continuous functions lies the class of Cauchy continuous functions, i.e., the functions that map Cauchy sequences in the domain to Cauchy sequences in the target space. Here, we exhibit an intermediate class of Cauchy continuous locally Lipschitz functions that is uniformly dense in the real-valued Cauchy continuous functions. In fact, our result is valid when our target space is an arbitrary Banach space.