3 resultados para The Critical Incident Technique
em Universidade Complutense de Madrid
Resumo:
We study the critical behavior of the diluted antiferromagnet in a field with the tethered Monte Carlo formalism. We compute the critical exponents (including the elusive hyperscaling violations exponent θ). Our results provide a comprehensive description of the phase transition and clarify the inconsistencies between previous experimental and theoretical work. To do so, our method addresses the usual problems of numerical work (large tunneling barriers and self-averaging violations).
Resumo:
We investigate the critical properties of the four-state commutative random permutation glassy Potts model in three and four dimensions by means of Monte Carlo simulations and a finite-size scaling analysis. By using a field programmable gate array, we have been able to thermalize a large number of samples of systems with large volume. This has allowed us to observe a spin-glass ordered phase in d=4 and to study the critical properties of the transition. In d=3, our results are consistent with the presence of a Kosterlitz-Thouless transition, but also with different scenarios: transient effects due to a value of the lower critical dimension slightly below 3 could be very important.
Resumo:
We have simulated, using parallel tempering, the three-dimensional Ising spin glass model with binary couplings in a helicoidal geometry. The largest lattice (L520) has been studied using a dedicated computer (the SUE machine). We have obtained, measuring the correlation length in the critical region, strong evidence for a second-order finite-temperature phase transition, ruling out other possible scenarios like a KosterlitzThouless phase transition. Precise values for the ν and ƞ critical exponents are also presented.