2 resultados para Textual information processing
em Universidade Complutense de Madrid
Resumo:
We theoretically study the resonance fluorescence spectrum of a three-level quantum emitter coupled to a spherical metallic nanoparticle. We consider the case that the quantum emitter is driven by a single laser field along one of the optical transitions. We show that the development of the spectrum depends on the relative orientation of the dipole moments of the optical transitions in relation to the metal nanoparticle. In addition, we demonstrate that the location and width of the peaks in the spectrum are strongly modified by the exciton-plasmon coupling and the laser detuning, allowing to achieve controlled strongly subnatural spectral line. A strong antibunching of the fluorescent photons along the undriven transition is also obtained. Our results may be used for creating a tunable source of photons which could be used for a probabilistic entanglement scheme in the field of quantum information processing.
Resumo:
Performing experiments on small-scale quantum computers is certainly a challenging endeavor. Many parameters need to be optimized to achieve high-fidelity operations. This can be done efficiently for operations acting on single qubits, as errors can be fully characterized. For multiqubit operations, though, this is no longer the case, as in the most general case, analyzing the effect of the operation on the system requires a full state tomography for which resources scale exponentially with the system size. Furthermore, in recent experiments, additional electronic levels beyond the two-level system encoding the qubit have been used to enhance the capabilities of quantum-information processors, which additionally increases the number of parameters that need to be controlled. For the optimization of the experimental system for a given task (e.g., a quantum algorithm), one has to find a satisfactory error model and also efficient observables to estimate the parameters of the model. In this manuscript, we demonstrate a method to optimize the encoding procedure for a small quantum error correction code in the presence of unknown but constant phase shifts. The method, which we implement here on a small-scale linear ion-trap quantum computer, is readily applicable to other AMO platforms for quantum-information processing.