2 resultados para Técnicas de 3.5G EUL
em Universidade Complutense de Madrid
Resumo:
El objetivo principal de este proyecto es confeccionar material didáctico adicional audiovisual (vídeos) en inglés y en otros idiomas extranjeros para proporcionarlo a los estudiantes del Grado en Farmacia con la finalidad de mejorar su capacitación. Los objetivos alcanzados fueron: 1) Se confeccionaron el material didáctico y todos los documentos necesarios para el desarrollo del proyecto. 2) La mayoría del alumnado que aprovechó el material puso de manifiesto su satisfacción y la utilidad con respecto al proyecto y al material audiovisual. La franja de alumnado que no vio el material no lo hizo en más de la mitad de los casos por falta de tiempo. Según los resultados obtenidos, el grado de satisfacción es mayor entre el alumnado que vio más vídeos. 3) El proyecto tuvo un impacto positivo en el rendimiento de los alumnos. Este resultado no se observa si se comparan las calificaciones medias del grupo experimental y del grupo control, porque las calificaciones de la docencia práctica tienen de por sí una media elevada y eso no permite la apreciación del impacto positivo de esa variable. Lo que sí modificó la aplicación de este proyecto en la docencia práctica es la calidad del grupo experimental, ya que las calificaciones se concentran más alrededor del valor medio.
Resumo:
A pesar de la existencia de una multitud de investigaciones sobre el análisis de sentimiento, existen pocos trabajos que traten el tema de su implantación práctica y real y su integración con la inteligencia de negocio y big data de tal forma que dichos análisis de sentimiento estén incorporados en una arquitectura (que soporte todo el proceso desde la obtención de datos hasta su explotación con las herramientas de BI) aplicada a la gestión de la crisis. Se busca, por medio de este trabajo, investigar cómo se pueden unir los mundos de análisis (de sentimiento y crisis) y de la tecnología (todo lo relacionado con la inteligencia de negocios, minería de datos y Big Data), y crear una solución de Inteligencia de Negocios que comprenda la minería de datos y el análisis de sentimiento (basados en grandes volúmenes de datos), y que ayude a empresas y/o gobiernos con la gestión de crisis. El autor se ha puesto a estudiar formas de trabajar con grandes volúmenes de datos, lo que se conoce actualmente como Big Data Science, o la ciencia de los datos aplicada a grandes volúmenes de datos (Big Data), y unir esta tecnología con el análisis de sentimiento relacionado a una situación real (en este trabajo la situación elegida fue la del proceso de impechment de la presidenta de Brasil, Dilma Rousseff). En esta unión se han utilizado técnicas de inteligencia de negocios para la creación de cuadros de mandos, rutinas de ETC (Extracción, Transformación y Carga) de los datos así como también técnicas de minería de textos y análisis de sentimiento. El trabajo ha sido desarrollado en distintas partes y con distintas fuentes de datos (datasets) debido a las distintas pruebas de tecnología a lo largo del proyecto. Uno de los datasets más importantes del proyecto son los tweets recogidos entre los meses de diciembre de 2015 y enero de 2016. Los mensajes recogidos contenían la palabra "Dilma" en el mensaje. Todos los twittees fueron recogidos con la API de Streaming del Twitter. Es muy importante entender que lo que se publica en la red social Twitter no se puede manipular y representa la opinión de la persona o entidad que publica el mensaje. Por esto se puede decir que hacer el proceso de minería de datos con los datos del Twitter puede ser muy eficiente y verídico. En 3 de diciembre de 2015 se aceptó la petición de apertura del proceso del impechment del presidente de Brasil, Dilma Rousseff. La petición fue aceptada por el presidente de la Cámara de los Diputados, el diputado Sr. Eduardo Cunha (PMDBRJ), y de este modo se creó una expectativa sobre el sentimiento de la población y el futuro de Brasil. También se ha recogido datos de las búsquedas en Google referentes a la palabra Dilma; basado en estos datos, el objetivo es llegar a un análisis global de sentimiento (no solo basado en los twittees recogidos). Utilizando apenas dos fuentes (Twitter y búsquedas de Google) han sido extraídos muchísimos datos, pero hay muchas otras fuentes donde es posible obtener informaciones con respecto de las opiniones de las personas acerca de un tema en particular. Así, una herramienta que pueda recoger, extraer y almacenar tantos datos e ilustrar las informaciones de una manera eficaz que ayude y soporte una toma de decisión, contribuye para la gestión de crisis.