2 resultados para Suppression of Fermi acceleration

em Universidade Complutense de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the electron dynamics and transport properties of one-dimensional continuous models with random, short-range correlated impurities. We develop a generalized Poincare map formalism to cast the Schrodinger equation for any potential into a discrete set of equations, illustrating its application by means of a specific example. We then concentrate on the case of a Kronig-Penney model with dimer impurities. The previous technique allows us to show that this model presents infinitely many resonances (zeroes of the reflection coefficient at a single dimer) that give rise to a band of extended states, in contradiction with the general viewpoint that all one-dimensional models with random potentials support only localized states. We report on exact transfer-matrix numerical calculations of the transmission coefFicient, density of states, and localization length for various strengths of disorder. The most important conclusion so obtained is that this kind of system has a very large number of extended states. Multifractal analysis of very long systems clearly demonstrates the extended character of such states in the thermodynamic limit. In closing, we brieBy discuss the relevance of these results in several physical contexts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data from the HEGRA air shower array are used to set an upper limit on the emission of gamma-radiation above 25 (18) TeV from the direction of the radio bright region DR4 within the SNR G78.2 + 2.1 of 2.5 (7.1). 10^-13 cm^-2 sec^-1. The shock front of SNR G78.2 + 2.1 probably recently overtook the molecular cloud Gong 8 which then acts as a target for the cosmic rays produced within the SNR, thus leading to the expectation of enhanced gamma-radiation. Using a model of Drury, Aharonian and Völk which assumes that SNRs are the sources of galactic cosmic rays via first order Fermi acceleration, we calculated a theoretical prediction for the gamma-ray flux from the DR4 region and compared it with our experimental flux limit. Our 'best estimate' value for the predicted flux lies a factor of about 18 above the upper limit for gamma-ray energies above 25 TeV. Possible reasons for this discrepancy are discussed.