6 resultados para Stratospheric circulation

em Universidade Complutense de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Because of its relevance for the global climate the Atlantic meridional overturning circulation (AMOC) has been a major research focus for many years. Yet the question of which physical mechanisms ultimately drive the AMOC, in the sense of providing its energy supply, remains a matter of controversy. Here we review both observational data and model results concerning the two main candidates: vertical mixing processes in the ocean's interior and wind-induced Ekman upwelling in the Southern Ocean. In distinction to the energy source we also discuss the role of surface heat and freshwater fluxes, which influence the volume transport of the meridional overturning circulation and shape its spatial circulation pattern without actually supplying energy to the overturning itself in steady state. We conclude that both wind-driven upwelling and vertical mixing are likely contributing to driving the observed circulation. To quantify their respective contributions, future research needs to address some open questions, which we outline.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Atlantic thermohaline circulation (THC) is an important part of the earth's climate system. Previous research has shown large uncertainties in simulating future changes in this critical system. The simulated THC response to idealized freshwater perturbations and the associated climate changes have been intercompared as an activity of World Climate Research Program (WCRP) Coupled Model Intercomparison Project/Paleo-Modeling Intercomparison Project (CMIP/PMIP) committees. This intercomparison among models ranging from the earth system models of intermediate complexity (EMICs) to the fully coupled atmosphere-ocean general circulation models (AOGCMs) seeks to document and improve understanding of the causes of the wide variations in the modeled THC response. The robustness of particular simulation features has been evaluated across the model results. In response to 0.1-Sv (1 Sv equivalent to 10^6 ms^3 s^-1) freshwater input in the northern North Atlantic, the multimodel ensemble mean THC weakens by 30% after 100 yr. All models simulate sonic weakening of the THC, but no model simulates a complete shutdown of the THC. The multimodel ensemble indicates that the surface air temperature could present a complex anomaly pattern with cooling south of Greenland and warming over the Barents and Nordic Seas. The Atlantic ITCZ tends to shift southward. In response to 1.0-Sv freshwater input, the THC switches off rapidly in all model simulations. A large cooling occurs over the North Atlantic. The annual mean Atlantic ITCZ moves into the Southern Hemisphere. Models disagree in terms of the reversibility of the THC after its shutdown. In general, the EMICs and AOGCMs obtain similar THC responses and climate changes with more pronounced and sharper patterns in the AOGCMs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As part of the Coupled Model Intercomparison Project, integrations with a common design have been undertaken with eleven different climate models to compare the response of the Atlantic thermohaline circulation ( THC) to time-dependent climate change caused by increasing atmospheric CO2 concentration. Over 140 years, during which the CO2 concentration quadruples, the circulation strength declines gradually in all models, by between 10 and 50%. No model shows a rapid or complete collapse, despite the fairly rapid increase and high final concentration of CO2. The models having the strongest overturning in the control climate tend to show the largest THC reductions. In all models, the THC weakening is caused more by changes in surface heat flux than by changes in surface water flux. No model shows a cooling anywhere, because the greenhouse warming is dominant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the coupled climate model CLIMBER-3α, we investigate changes in sea surface elevation due to a weakening of the thermohaline circulation (THC). In addition to a global sea level rise due to a warming of the deep sea, this leads to a regional dynamic sea level change which follows quasi-instantaneously any change in the ocean circulation. We show that the magnitude of this dynamic effect can locally reach up to ~1m, depending on the initial THC strength. In some regions the rate of change can be up to 20-25 mm/yr. The emerging patterns are discussed with respect to the oceanic circulation changes. Most prominent is a south-north gradient reflecting the changes in geostrophic surface currents. Our results suggest that an analysis of observed sea level change patterns could be useful for monitoring the THC strength.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ECHAM-1 T21/LSG coupled ocean-atmosphere general circulation model (GCM) is used to simulate climatic conditions at the last interglacial maximum (Eemian. 125 kyr BP). The results reflect thc expected surface temperature changes (with respect to the control run) due to the amplification (reduction) of the seasonal cycle of insolation in the Northern (Southern) Hemisphere. A number of simulated features agree with previous results from atmospheric GCM simulations e.g. intensified summer southwest monsoons) except in the Northern Hemisphere poleward of 30 degrees N. where dynamical feedback, in the North Atlantic and North Pacific increase zonal temperatures about 1 degrees C above what would be predicted from simple energy balance considerations. As this is the same area where most of the terrestrial geological data originate, this result suggests that previous estimates of Eemian global average temperature might have been biased by sample distribution. This conclusion is supported by the fact that the estimated global temperature increase of only 0.3 degrees C greater than the control run ha, been previously shown to be consistent a with CLIMAP sea surface temperature estimates. Although the Northern Hemisphere summer monsoon is intensified. globally averaged precipitation over land is within about 1% of the present, contravening some geological inferences bur not the deep-sea delta(13)C estimates of terrestrial carbon storage changes. Winter circulation changes in the northern Arabian Sea. driven by strong cooling on land, are as large as summer circulation changes that are the usual focus of interest, suggesting that interpreting variations in the Arabian Sea. sedimentary record solely in terms of the summer monsoon response could sometimes lead to errors. A small monsoonal response over northern South America suggests that interglacial paleotrends in this region were not just due to El Nino variations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the Southern Hemisphere (SH) polar region, satellite observations reveal a significant upper-mesosphere cooling and a lower-thermosphere warming during warm ENSO events in December. An opposite pattern is observed in the tropical mesopause region. The observed upper-mesosphere cooling agrees with a climate model simulation. Analysis of the simulation suggests that enhanced planetary wave (PW) dissipation in the Northern Hemisphere (NH) high-latitude stratosphere during El Nino strengthens the Brewer-Dobson circulation and cools the equatorial stratosphere. This increases the magnitude of the SH stratosphere meridional temperature gradient and thus causes the anomalous stratospheric easterly zonal wind and early breakdown of the SH stratospheric polar vortex. The resulting perturbation to gravity wave (GW) filtering causes anomalous SH mesospheric eastward GW forcing and polar upwelling and cooling. In addition, constructive inference of ENSO and quasi-biennial oscillation (QBO) could lead to stronger stratospheric easterly zonal wind anomalies at the SH high latitudes in November and December and early breakdown of the SH stratospheric polar vortex during warm ENSO events in the easterly QBO phase (defined by the equatorial zonal wind at similar to 25 hPa). This would in turn cause much more SH mesospheric eastward GW forcing and much colder polar temperatures, and hence it would induce an early onset time of SH summer polar mesospheric clouds (PMCs). The opposite mechanism occurs during cold ENSO events in the westerly QBO phase. This implies that ENSO together with QBO could significantly modulate the breakdown time of SH stratospheric polar vortex and the onset time of SH PMC.