1 resultado para Speed Bumps.
em Universidade Complutense de Madrid
Filtro por publicador
- Repository Napier (1)
- Aberdeen University (1)
- Academic Research Repository at Institute of Developing Economies (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (5)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (7)
- Aquatic Commons (4)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (11)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (7)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (7)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (1)
- Biodiversity Heritage Library, United States (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (28)
- Boston University Digital Common (2)
- Brock University, Canada (8)
- Bucknell University Digital Commons - Pensilvania - USA (4)
- CaltechTHESIS (4)
- Cambridge University Engineering Department Publications Database (176)
- CentAUR: Central Archive University of Reading - UK (47)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (69)
- Cochin University of Science & Technology (CUSAT), India (2)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- Dalarna University College Electronic Archive (5)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Michigan Tech (6)
- DigitalCommons - The University of Maine Research (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- Duke University (2)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (3)
- Greenwich Academic Literature Archive - UK (4)
- Indian Institute of Science - Bangalore - Índia (62)
- Instituto Politécnico de Bragança (2)
- Instituto Politécnico do Porto, Portugal (2)
- Martin Luther Universitat Halle Wittenberg, Germany (2)
- Massachusetts Institute of Technology (2)
- Ministerio de Cultura, Spain (3)
- National Center for Biotechnology Information - NCBI (7)
- Nottingham eTheses (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (8)
- Publishing Network for Geoscientific & Environmental Data (28)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (79)
- Queensland University of Technology - ePrints Archive (128)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (3)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (67)
- Universidad Autónoma de Nuevo León, Mexico (1)
- Universidad de Alicante (6)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (75)
- Universidade Complutense de Madrid (1)
- Universidade Federal do Pará (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (4)
- Université de Montréal (1)
- Université de Montréal, Canada (2)
- University of Michigan (23)
- University of Washington (1)
- WestminsterResearch - UK (4)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
Efficient hardware implementations of arithmetic operations in the Galois field are highly desirable for several applications, such as coding theory, computer algebra and cryptography. Among these operations, multiplication is of special interest because it is considered the most important building block. Therefore, high-speed algorithms and hardware architectures for computing multiplication are highly required. In this paper, bit-parallel polynomial basis multipliers over the binary field GF(2(m)) generated using type II irreducible pentanomials are considered. The multiplier here presented has the lowest time complexity known to date for similar multipliers based on this type of irreducible pentanomials.