4 resultados para Speckle Noise
em Universidade Complutense de Madrid
Resumo:
Abstract. Speckle is being used as a characterization tool for the analysis of the dynamics of slow-varying phenomena occurring in biological and industrial samples at the surface or near-surface regions. The retrieved data take the form of a sequence of speckle images. These images contain information about the inner dynamics of the biological or physical process taking place in the sample. Principal component analysis (PCA) is able to split the original data set into a collection of classes. These classes are related to processes showing different dynamics. In addition, statistical descriptors of speckle images are used to retrieve information on the characteristics of the sample. These statistical descriptors can be calculated in almost real time and provide a fast monitoring of the sample. On the other hand, PCA requires a longer computation time, but the results contain more information related to spatial–temporal patterns associated to the process under analysis. This contribution merges both descriptions and uses PCA as a preprocessing tool to obtain a collection of filtered images, where statistical descriptors are evaluated on each of them. The method applies to slow-varying biological and industrial processes.
Resumo:
Recent discussion regarding whether the noise that limits 2AFC discrimination performance is fixed or variable has focused either on describing experimental methods that presumably dissociate the effects of response mean and variance or on reanalyzing a published data set with the aim of determining how to solve the question through goodness-of-fit statistics. This paper illustrates that the question cannot be solved by fitting models to data and assessing goodness-of-fit because data on detection and discrimination performance can be indistinguishably fitted by models that assume either type of noise when each is coupled with a convenient form for the transducer function. Thus, success or failure at fitting a transducer model merely illustrates the capability (or lack thereof) of some particular combination of transducer function and variance function to account for the data, but it cannot disclose the nature of the noise. We also comment on some of the issues that have been raised in recent exchange on the topic, namely, the existence of additional constraints for the models, the presence of asymmetric asymptotes, the likelihood of history-dependent noise, and the potential of certain experimental methods to dissociate the effects of response mean and variance.
Resumo:
Speckle is being used as a characterization tool for the analysis of the dynamic of slow varying phenomena occurring in biological and industrial samples. The retrieved data takes the form of a sequence of speckle images. The analysis of these images should reveal the inner dynamic of the biological or physical process taking place in the sample. Very recently, it has been shown that principal component analysis is able to split the original data set in a collection of classes. These classes can be related with the dynamic of the observed phenomena. At the same time, statistical descriptors of biospeckle images have been used to retrieve information on the characteristics of the sample. These statistical descriptors can be calculated in almost real time and provide a fast monitoring of the sample. On the other hand, principal component analysis requires longer computation time but the results contain more information related with spatial-temporal pattern that can be identified with physical process. This contribution merges both descriptions and uses principal component analysis as a pre-processing tool to obtain a collection of filtered images where a simpler statistical descriptor can be calculated. The method has been applied to slow-varying biological and industrial processes
Resumo:
The accuracy in determining the quantum state of a system depends on the type of measurement performed. Homodyne and heterodyne detection are the two main schemes in continuous-variable quantum information. The former leads to a direct reconstruction of the Wigner function of the state, whereas the latter samples its Husimi Q function. We experimentally demonstrate that heterodyne detection outperforms homodyne detection for almost all Gaussian states, the details of which depend on the squeezing strength and thermal noise.