2 resultados para Shortwave cloud radiative effect

em Universidade Complutense de Madrid


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies addressing climate variability during the last millennium generally focus on variables with a direct influence on climate variability, like the fast thermal response to varying radiative forcing, or the large-scale changes in atmospheric dynamics (e. g. North Atlantic Oscillation). The ocean responds to these variations by slowly integrating in depth the upper heat flux changes, thus producing a delayed influence on ocean heat content (OHC) that can later impact low frequency SST (sea surface temperature) variability through reemergence processes. In this study, both the externally and internally driven variations of the OHC during the last millennium are investigated using a set of fully coupled simulations with the ECHO-G (coupled climate model ECHAMA4 and ocean model HOPE-G) atmosphere-ocean general circulation model (AOGCM). When compared to observations for the last 55 yr, the model tends to overestimate the global trends and underestimate the decadal OHC variability. Extending the analysis back to the last one thousand years, the main impact of the radiative forcing is an OHC increase at high latitudes, explained to some extent by a reduction in cloud cover and the subsequent increase of short-wave radiation at the surface. This OHC response is dominated by the effect of volcanism in the preindustrial era, and by the fast increase of GHGs during the last 150 yr. Likewise, salient impacts from internal climate variability are observed at regional scales. For instance, upper temperature in the equatorial Pacific is controlled by ENSO (El Nino Southern Oscillation) variability from interannual to multidecadal timescales. Also, both the Pacific Decadal Oscillation (PDO) and the Atlantic Multidecadal Oscillation (AMO) modulate intermittently the interdecadal OHC variability in the North Pacific and Mid Atlantic, respectively. The NAO, through its influence on North Atlantic surface heat fluxes and convection, also plays an important role on the OHC at multiple timescales, leading first to a cooling in the Labrador and Irminger seas, and later on to a North Atlantic warming, associated with a delayed impact on the AMO.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: To evaluate the differences between goblet cell density (GCD) and symptomatology after one month of orthokeratology lens wear. Methods: A pilot, short-term study was conducted. Twenty-two subjects (29.7. ±. 7.0 years old) participated voluntarily in the study. Subjects were divided into two groups: habitual silicone hydrogel contact lens wearers (SiHCLW) and new contact lens wearers (NCLW). Schirmer test, tear break up time (TBUT), Ocular Surface Disease Index (OSDI) questionnaire and conjunctival impression cytology. GCD, mucin cloud height (MCH) and cell layer thickness (CLT) were measured. All measurements were performed before orthokeratology fitting and one month after fitting to assess the evolution of the changes throughout this time. Results: No differences in tear volume and TBUT between groups were found (p>0.05). However, the OSDI score was statistically better after one month of orthokeratology lens wear than the baseline for the SiHCLW group (p=0.03). Regarding the goblet cell analysis, no differences were found in CLT and MCH from the baseline visit to the one month visit for the SiHCLW compared with NCLW groups (p>0.05). At baseline, the GCD in the SiHCLW group were statistically lower than NCLW group (p<0.001). There was a significant increase in GCD after orthokeratology fitting from 121±140cell/mm2 to 254±130cell/mm2 (p<0.001) in the SiHCLW group. Conclusion: Orthokeratology improves the dry eye subject symptoms and GCD after one month of wearing in SiHCLW. These results suggest that orthokeratology could be considered a good alternative for silicone hydrogel contact lens discomfort and dryness. © 2016 British Contact Lens Association.