3 resultados para Shorter wavelength

em Universidade Complutense de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

MEGARA (Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía) is an optical Integral-Field Unit (IFU) and Multi-Object Spectrograph (MOS) designed for the GTC 10.4 m telescope in La Palma. MEGARA will be a 3rd generation instrument for GTC. It is led by the University Complutense of Madrid with the collaboration of INAOE, IAA, UPM and comprises more than 50 researchers from a large number of institutions worldwide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pupil light reflex can be used as a non-invasive ocular predictor of cephalic autonomic nervous system integrity. Spectral sensitivity of the pupil's response to light has, for some time, been an interesting issue. It has generally, however, only been investigated with the use of white light and studies with monochromatic wavelengths are scarce. This study investigates the effects of wavelength and age within three parameters of the pupil light reflex (amplitude of response, latency, and velocity of constriction) in a large sample of younger and older adults (N = 97), in mesopic conditions. Subjects were exposed to a single light stimulus at four different wavelengths: white (5600° K), blue (450 nm), green (510 nm), and red (600 nm). Data was analyzed appropriately, and, when applicable, using the General Linear Model (GLM), Randomized Complete Block Design (RCBD), Student's t-test and/or ANCOVA. Across all subjects, pupillary response to light had the greatest amplitude and shortest latency in white and green light conditions. In regards to age, older subjects (46-78 years) showed an increased latency in white light and decreased velocity of constriction in green light compared to younger subjects (18-45 years old). This study provides data patterns on parameters of wavelength-dependent pupil reflexes to light in adults and it contributes to the large body of pupillometric research. It is hoped that this study will add to the overall evaluation of cephalic autonomic nervous system integrity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: The objective of this study was to evaluate, by halometry and under low illumination conditions, the effects of short-wavelength light absorbance filters on visual discrimination capacity in retinitis pigmentosa patients. METHODS: This was an observational, prospective, analytic, and transversal study on 109 eyes of 57 retinitis pigmentosa patients with visual acuity better than 1.25 logMAR. Visual disturbance index (VDI) was determined using the software Halo 1.0, with and without the interposition of filters which absorb (totally or partially) short-wavelength light between 380 and 500 nm. RESULTS: A statistically significant reduction in the VDI values determined using filters which absorb short-wavelength light was observed (p < 0.0001). The established VDIs in patients with VA logMAR <0.4 were 0.30 ± 0.05 (95% CI, 0.26–0.36) for the lens alone, 0.20 ± 0.04 (95% CI, 0.16–0.24) with the filter that completely absorbs wavelengths shorter than 450 nm, and 0.24 ± 0.04 (95% CI, 0.20–0.28) with the filter that partially absorbs wavelengths shorter than 450 nm, which implies a 20 to 33% visual discrimination capacity increase. In addition, a decrease of VDI in at least one eye was observed in more than 90% of patients when using a filter. CONCLUSIONS: Short-wavelength light absorbance filters increase visual discrimination capacity under low illumination conditions in retinitis pigmentosa patients. Use of such filters constitutes a suitable method to improve visual quality related to intraocular light visual disturbances under low illumination conditions in this group of patients. © 2016 American Academy of Optometry