6 resultados para Short-range harmonic oscillator
em Universidade Complutense de Madrid
Resumo:
We compare the critical behavior of the short-range Ising spin glass with a spin glass with long-range interactions which fall off as a power σ of the distance. We show that there is a value of σ of the long-range model for which the critical behavior is very similar to that of the short range model in four dimensions. We also study a value of σ for which we find the critical behavior to be compatible with that of the three-dimensional model, although we have much less precision than in the four-dimensional case.
Resumo:
We consider the electron dynamics and transport properties of one-dimensional continuous models with random, short-range correlated impurities. We develop a generalized Poincare map formalism to cast the Schrodinger equation for any potential into a discrete set of equations, illustrating its application by means of a specific example. We then concentrate on the case of a Kronig-Penney model with dimer impurities. The previous technique allows us to show that this model presents infinitely many resonances (zeroes of the reflection coefficient at a single dimer) that give rise to a band of extended states, in contradiction with the general viewpoint that all one-dimensional models with random potentials support only localized states. We report on exact transfer-matrix numerical calculations of the transmission coefFicient, density of states, and localization length for various strengths of disorder. The most important conclusion so obtained is that this kind of system has a very large number of extended states. Multifractal analysis of very long systems clearly demonstrates the extended character of such states in the thermodynamic limit. In closing, we brieBy discuss the relevance of these results in several physical contexts.
Resumo:
The phase diagram of the simplest approximation to double-exchange systems, the bosonic double-exchange model with antiferromagnetic (AFM) superexchange coupling, is fully worked out by means of Monte Carlo simulations, large-N expansions, and variational mean-field calculations. We find a rich phase diagram, with no first-order phase transitions. The most surprising finding is the existence of a segmentlike ordered phase at low temperature for intermediate AFM coupling which cannot be detected in neutron-scattering experiments. This is signaled by a maximum (a cusp) in the specific heat. Below the phase transition, only short-range ordering would be found in neutron scattering. Researchers looking for a quantum critical point in manganites should be wary of this possibility. Finite-size scaling estimates of critical exponents are presented, although large scaling corrections are present in the reachable lattice sizes.
Resumo:
We study theoretically the effect of a new type of blocklike positional disorder on the effective electromagnetic properties of one-dimensional chains of resonant, high-permittivity dielectric particles, where particles are arranged into perfectly well-ordered blocks whose relative position is a random variable. This creates a finite order correlation length that mimics the situation encountered in metamaterials fabricated through self-assembled techniques, whose structures often display short-range order between near neighbors but long-range disorder, due to stacking defects. Using a spectral theory approach combined with a principal component statistical analysis, we study, in the long-wavelength regime, the evolution of the electromagnetic response when the composite filling fraction and the block size are changed. Modifications in key features of the resonant response (amplitude, width, etc.) are investigated, showing a regime transition for a filling fraction around 50%.
Resumo:
We study the conjectured “insensitivity to chiral symmetry breaking” in the highly excited light baryon spectrum. While the experimental spectrum is being measured at JLab and CBELSA/TAPS, this insensitivity remains to be computed theoretically in detail. As the only existing option to have both confinement, highly excited states, and chiral symmetry, we adopt the truncated Coulomb-gauge formulation of QCD, considering a linearly confining Coulomb term. Adopting a systematic and numerically intensive variational treatment up to 12 harmonic oscillator shells we are able to access several angular and radial excitations. We compute both the excited spectra of I=1/2 and I=3/2 baryons, up to large spin J=13/2, and study in detail the proposed chiral multiplets. While the static-light and light-light spectra clearly show chiral symmetry restoration high in the spectrum, the realization of chiral symmetry is more complicated in the baryon spectrum than earlier expected.
Resumo:
EChO (Exoplanet atmospheres Characterization Observatory), a proposal for exoplanets exploration space mission, is considered the next step for planetary atmospheres characterization. It would be a dedicated observatory to uncover a large selected sample of planets spanning a wide range of masses (from gas giants to super-Earths) and orbital temperatures (from hot to habitable). All targets move around stars of spectral types F, G, K, and M. EChO would provide an unprecedented view of the atmospheres of planets in the solar neighbourhood. The consortium formed by various institutions of different countries proposed as ESA M3 an integrated spectrometer payload for EChO covering the wavelength interval 0.4 to 16 µm. This instrument is subdivided into 4 channels: a visible channel, which includes a fine guidance system (FGS) and a VIS spectrometer, a near infrared channel (SWiR), a middle infrared channel (MWiR), and a long wave infrared module (LWiR). In addition, it contains a common set of optics spectrally dividing the wavelength coverage and injecting the combined light of parent stars and their exoplanets into the different channels. The proposed payload meets all of the key performance requirements detailed in the ESA call for proposals as well as all scientific goals. EChO payload is based on different spectrometers covering the spectral range mentioned above. Among them, SWiR spectrometer would work from 2.45 microns to 5.45 microns. In this paper, the optical and mechanical designs of the SWiR channel instrument are reported on.