4 resultados para Set-Valued Functions

em Universidade Complutense de Madrid


Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the context of real-valued functions defined on metric spaces, it is known that the locally Lipschitz functions are uniformly dense in the continuous functions and that the Lipschitz in the small functions - the locally Lipschitz functions where both the local Lipschitz constant and the size of the neighborhood can be chosen independent of the point - are uniformly dense in the uniformly continuous functions. Between these two basic classes of continuous functions lies the class of Cauchy continuous functions, i.e., the functions that map Cauchy sequences in the domain to Cauchy sequences in the target space. Here, we exhibit an intermediate class of Cauchy continuous locally Lipschitz functions that is uniformly dense in the real-valued Cauchy continuous functions. In fact, our result is valid when our target space is an arbitrary Banach space.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this reviewing paper, we recall the main results of our papers [24, 31] where we introduced two paraconsistent semantics for Pavelka style fuzzy logic. Each logic formula a is associated with a 2 x 2 matrix called evidence matrix. The two semantics are consistent if they are seen from 'outside'; the structure of the set of the evidence matrices M is an MV-algebra and there is nothing paraconsistent there. However, seen from "inside,' that is, in the construction of a single evidence matrix paraconsistency comes in, truth and falsehood are not each others complements and there is also contradiction and lack of information (unknown) involved. Moreover, we discuss the possible applications of the two logics in real-world phenomena.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent discussion regarding whether the noise that limits 2AFC discrimination performance is fixed or variable has focused either on describing experimental methods that presumably dissociate the effects of response mean and variance or on reanalyzing a published data set with the aim of determining how to solve the question through goodness-of-fit statistics. This paper illustrates that the question cannot be solved by fitting models to data and assessing goodness-of-fit because data on detection and discrimination performance can be indistinguishably fitted by models that assume either type of noise when each is coupled with a convenient form for the transducer function. Thus, success or failure at fitting a transducer model merely illustrates the capability (or lack thereof) of some particular combination of transducer function and variance function to account for the data, but it cannot disclose the nature of the noise. We also comment on some of the issues that have been raised in recent exchange on the topic, namely, the existence of additional constraints for the models, the presence of asymmetric asymptotes, the likelihood of history-dependent noise, and the potential of certain experimental methods to dissociate the effects of response mean and variance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

n this paper we deal with the problem of obtaining the set of k-additive measures dominating a fuzzy measure. This problem extends the problem of deriving the set of probabilities dominating a fuzzy measure, an important problem appearing in Decision Making and Game Theory. The solution proposed in the paper follows the line developed by Chateauneuf and Jaffray for dominating probabilities and continued by Miranda et al. for dominating k-additive belief functions. Here, we address the general case transforming the problem into a similar one such that the involved set functions have non-negative Möbius transform; this simplifies the problem and allows a result similar to the one developed for belief functions. Although the set obtained is very large, we show that the conditions cannot be sharpened. On the other hand, we also show that it is possible to define a more restrictive subset, providing a more natural extension of the result for probabilities, such that it is possible to derive any k-additive dominating measure from it.