2 resultados para Seasonal cycle

em Universidade Complutense de Madrid


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ECHAM-1 T21/LSG coupled ocean-atmosphere general circulation model (GCM) is used to simulate climatic conditions at the last interglacial maximum (Eemian. 125 kyr BP). The results reflect thc expected surface temperature changes (with respect to the control run) due to the amplification (reduction) of the seasonal cycle of insolation in the Northern (Southern) Hemisphere. A number of simulated features agree with previous results from atmospheric GCM simulations e.g. intensified summer southwest monsoons) except in the Northern Hemisphere poleward of 30 degrees N. where dynamical feedback, in the North Atlantic and North Pacific increase zonal temperatures about 1 degrees C above what would be predicted from simple energy balance considerations. As this is the same area where most of the terrestrial geological data originate, this result suggests that previous estimates of Eemian global average temperature might have been biased by sample distribution. This conclusion is supported by the fact that the estimated global temperature increase of only 0.3 degrees C greater than the control run ha, been previously shown to be consistent a with CLIMAP sea surface temperature estimates. Although the Northern Hemisphere summer monsoon is intensified. globally averaged precipitation over land is within about 1% of the present, contravening some geological inferences bur not the deep-sea delta(13)C estimates of terrestrial carbon storage changes. Winter circulation changes in the northern Arabian Sea. driven by strong cooling on land, are as large as summer circulation changes that are the usual focus of interest, suggesting that interpreting variations in the Arabian Sea. sedimentary record solely in terms of the summer monsoon response could sometimes lead to errors. A small monsoonal response over northern South America suggests that interglacial paleotrends in this region were not just due to El Nino variations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The atmospheric seasonal cycle of the North Atlantic region is dominated by meridional movements of the circulation systems: from the tropics, where the West African Monsoon and extreme tropical weather events take place, to the extratropics, where the circulation is dominated by seasonal changes in the jetstream and extratropical cyclones. Climate variability over the North Atlantic is controlled by various mechanisms. Atmospheric internal variability plays a crucial role in the mid-latitudes. However, El Niño-Southern Oscillation (ENSO) is still the main source of predictability in this region situated far away from the Pacific. Although the ENSO influence over tropical and extra-tropical areas is related to different physical mechanisms, in both regions this teleconnection seems to be non-stationary in time and modulated by multidecadal changes of the mean flow. Nowadays, long observational records (greater than 100 years) and modeling projects (e.g., CMIP) permit detecting non-stationarities in the influence of ENSO over the Atlantic basin, and further analyzing its potential mechanisms. The present article reviews the ENSO influence over the Atlantic region, paying special attention to the stability of this teleconnection over time and the possible modulators. Evidence is given that the ENSO–Atlantic teleconnection is weak over the North Atlantic. In this regard, the multidecadal ocean variability seems to modulate the presence of teleconnections, which can lead to important impacts of ENSO and to open windows of opportunity for seasonal predictability.