6 resultados para Salmonella Pullorum
em Universidade Complutense de Madrid
Resumo:
Salmonella enterica serovar Typhimurium is an important zoonotic gastrointestinal pathogen responsible for foodborne disease worldwide. It is a successful enteric pathogen because it has developed virulence strategies allowing it to survive in a highly inflamed intestinal environment exploiting inflammation to overcome colonization resistance provided by intestinal microbiota. In this study, we used piglets featuring an intact microbiota, which naturally develop gastroenteritis, as model for salmonellosis. We compared the effects on the intestinal microbiota induced by a wild type and an attenuated S. Typhimurium in order to evaluate whether the modifications are correlated with the virulence of the strain. This study showed that Salmonella alters microbiota in a virulence-dependent manner. We found that the wild type S. Typhimurium induced inflammation and a reduction of specific protecting microbiota species (SCFA-producing bacteria) normally involved in providing a barrier against pathogens. Both these effects could contribute to impair colonization resistance, increasing the host susceptibility to wild type S. Typhimurium colonization. In contrast, the attenuated S. Typhimurium, which is characterized by a reduced ability to colonize the intestine, and by a very mild inflammatory response, was unable to successfully sustain competition with the microbiota.
Resumo:
Salmonella Typhimurium (S. Typhimurium) is responsible for foodborne zoonotic infections that, in humans, induce self-limiting gastroenteritis. The aim of this study was to evaluate whether the wild-type strain S. Typhimurium (STM14028) is able to exploit inflammation fostering an active infection. Due to the similarity between human and porcine diseases induced by S. Typhimurium, we used piglets as a model for salmonellosis and gastrointestinal research. This study showed that STM14028 is able to efficiently colonize in vitro porcine mono-macrophages and intestinal columnar epithelial (IPEC-J2) cells, and that the colonization significantly increases with LPS pre-treatment. This increase was then reversed by inhibiting the LPS stimulation through LPS antagonist, confirming an active role of LPS stimulation in STM14028-intracellular colonization. Moreover, LPS in vivo treatment increased cytokines blood level and body temperature at 4 h post infection, which is consistent with an acute inflammatory stimulus, capable to influence the colonization of STM14028 in different organs and tissues. The present study proves for the first time that in acute enteric salmonellosis, S. Typhimurium exploits inflammation for its benefit in piglets.
Resumo:
Salmonella is distributed worldwide and is a pathogen of economic and public health importance. As a multi-host pathogen with a long environmental persistence, it is a suitable model for the study of wildlife-livestock interactions. In this work, we aim to explore the spill-over of Salmonella between free-ranging wild boar and livestock in a protected natural area in NE Spain and the presence of antimicrobial resistance. Salmonella prevalence, serotypes and diversity were compared between wild boars, sympatric cattle and wild boars from cattle-free areas. The effect of age, sex, cattle presence and cattle herd size on Salmonella probability of infection in wild boars was explored by means of Generalized Linear Models and a model selection based on the Akaike's Information Criterion. Prevalence was higher in wild boars co-habiting with cattle (35.67%, CI 95% 28.19-43.70) than in wild boar from cattle-free areas (17.54%, CI 95% 8.74-29.91). Probability of a wild boar being a Salmonella carrier increased with cattle herd size but decreased with the host age. Serotypes Meleagridis, Anatum and Othmarschen were isolated concurrently from cattle and sympatric wild boars. Apart from serotypes shared with cattle, wild boars appear to have their own serotypes, which are also found in wild boars from cattle-free areas (Enteritidis, Mikawasima, 4:b:- and 35:r:z35). Serotype richness (diversity) was higher in wild boars co-habiting with cattle, but evenness was not altered by the introduction of serotypes from cattle. The finding of a S. Mbandaka strain resistant to sulfamethoxazole, streptomycin and chloramphenicol and a S. Enteritidis strain resistant to ciprofloxacin and nalidixic acid in wild boars is cause for public health concern.
Resumo:
Aminoglycosides and beta-lactams are used for the treatment of a wide range of infections due to both Gram-negative and Gram-positive. An emerging aminoglycoside resistance mechanism, methylation of the aminoacyl site of the 16S rRNA, confers high-level resistance to clinically important aminoglycosides such as amikacin, tobramycin and gentamicin. Eight 16S rRNA methyltransferase genes, armA, rmtA, rmtB, rmtC, rmtD, rmtE, rmtF and npmA, have been identified in several species of enterobacteria worldwide (2, 6, 7, 9, 11, 13, 14). Resistance to extended spectrum β-lactams remains additionally an important clinical problem. Apart from the large TEM, SHV, and CTX-M families, several other extended-spectrum β-lactamases (ESBLs) have been identified, including VEB enzymes, which confer high-level resistance to cephalosporins and monobactams. Although 16S rRNA methyltransferases have been frequently identified associated with different ESBLs, there has been no report of association of a 16S rRNA methyltransferase with a VEB enzyme, except for the identification of rmtC with blaVEB-6 (14)
Resumo:
The 16S rRNA methyltransferase ArmA is a worldwide emerging determinant that confers high-level resistance to most clinically relevant aminoglycosides. We report here the identification and characterization of a multidrug-resistant Salmonella enterica subspecies I.4,12:i:- isolate recovered from chicken meat sampled in a supermarket on February 2009 in La Reunion, a French island in the Indian Ocean. Susceptibility testing showed an unusually high-level resistance to gentamicin, as well as to ampicillin, expanded-spectrum cephalosporins and amoxicillin-clavulanate. Molecular analysis of the 16S rRNA methyltransferases revealed presence of the armA gene, together with bla(TEM-1), bla(CMY-2), and bla(CTX-M-3). All of these genes could be transferred en bloc through conjugation into Escherichia coli at a frequency of 10(-5) CFU/donor. Replicon typing and S1 pulsed-field gel electrophoresis revealed that the armA gene was borne on an ~150-kb broad-host-range IncP plasmid, pB1010. To elucidate how armA had integrated in pB1010, a PCR mapping strategy was developed for Tn1548, the genetic platform for armA. The gene was embedded in a Tn1548-like structure, albeit with a deletion of the macrolide resistance genes, and an IS26 was inserted within the mel gene. To our knowledge, this is the first report of ArmA methyltransferase in food, showing a novel route of transmission for this resistance determinant. Further surveillance in food-borne bacteria will be crucial to determine the role of food in the spread of 16S rRNA methyltransferase genes worldwide.
Resumo:
A marked increase in the prevalence of S. enterica serovar 4,[5],12:i:- with resistance to ampicillin, streptomycin, sulphonamides and tetracyclines (R-type ASSuT) has been noted in food-borne infections and in pigs/pig meat in several European countries in the last ten years. One hundred and sixteen strains of S. enterica serovar 4,[5],12:i:- from humans, pigs and pig meat isolated in England and Wales, France, Germany, Italy, Poland, Spain and the Netherlands were further subtyped by phage typing, pulsed-field gel electrophoresis and multilocus variable number tandem repeat analysis to investigate the genetic relationship among strains. PCR was performed to identify the fljB flagellar gene and the genes encoding resistance to ampicillin, streptomycin, sulphonamides and tetracyclines. Class 1 and 2 integrase genes were also sought. Results indicate that genetically related serovar 4,[5],12:i:- strains of definitive phage types DT193 and DT120 with ampicillin, streptomycin, sulphonamide and tetracycline resistance encoded by blaTEM, strA-strB, sul2 and tet(B) have emerged in several European countries, with pigs the likely reservoir of infection. Control measures are urgently needed to reduce spread of infection to humans via the food chain and thereby prevent the possible pandemic spread of serovar 4,[5],12:i:- of R-type ASSuT as occurred with S. Typhimurium DT104 during the 1990s.