4 resultados para STRIPS
em Universidade Complutense de Madrid
Resumo:
Diffraction gratings are not always ideal but, due to the fabrication process, several errors can be produced. In this work we show that when the strips of a binary phase diffraction grating present certain randomness in their height, the intensity of the diffraction orders varies with respect to that obtained with a perfect grating. To show this, we perform an analysis of the mutual coherence function and then, the intensity distribution at the far field is obtained. In addition to the far field diffraction orders, a "halo" that surrounds the diffraction order is found, which is due to the randomness of the strips height.
Resumo:
We analyze the far-field intensity distribution of binary phase gratings whose strips present certain randomness in their height. A statistical analysis based on the mutual coherence function is done in the plane just after the grating. Then, the mutual coherence function is propagated to the far field and the intensity distribution is obtained. Generally, the intensity of the diffraction orders decreases in comparison to that of the ideal perfect grating. Several important limit cases, such as low- and high-randomness perturbed gratings, are analyzed. In the high-randomness limit, the phase grating is equivalent to an amplitude grating plus a “halo.” Although these structures are not purely periodic, they behave approximately as a diffraction grating.
Resumo:
Purpose.: To analyze the levels of diadenosine tetraphosphate (Ap4A) and diadenosine pentaphosphate (Ap5A) in tears of subjects with Sjögren syndrome and to compare them with those in a control group. Methods.: Twelve subjects with a diagnosis of Sjögren syndrome and 20 healthy control subjects were invited to participate in the present study. Schirmer strips were used to measure tear secretion (Schirmer I test) and to collect tears. Ap4A and Ap5A were measured by high-pressure liquid chromatography (HPLC), and a dry eye questionnaire (DEQ) was used to evaluate dry eye symptomatology. Results.: The mean concentrations of Ap4A and Ap5A in the Sjögren syndrome group were 2.54 ± 1.02 and 26.13 ± 6.95 μM, respectively. This group of patients was divided in two subgroups: four patients with normal tear production and eight patients with low tear production. Concentrations of Ap4A, and Ap5A in patients with normal tear production (Schirmer test result, 12.3 ± 1.2 mm) were 0.47 ± 0.20 and 8.03 ± 3.27 μM, respectively. In the patients with low tear production (Schirmer test result, 1.0 ± 0.3 mm), the concentrations were 4.09 ± 1.36 and 39.51 ± 8.46 μM, respectively and in the control group, 0.13 ± 0.03 and 0.04 ± 0.02 μM, respectively. Conclusions.: Patients with Sjögren syndrome have abnormally elevated concentrations of diadenosine polyphosphates, indicating that these compounds could be used in the diagnosis of this disease.
Resumo:
Purpose To evaluate the possible use of soft contact lenses (CL) to improve the secretagogue role of diadenosine tetraphosphate (Ap4A) promoting tear secretion. Methods Two conventional hydrogel CL (Omafilcon A and Ocufilcon D) and two silicone hydrogel (SiH) CL (Comfilcon A and Balafilcon A) were used. Ap4A was loaded into the lenses by soaking in a 1 mM Ap4A solution during 12 h. In vitro experiments were performed by placing the lenses in multi-wells during 2 h containing 1 ml of ultrapure water. 100 μl aliquots were taken at time zero and every minute for the first 10 min, and then every 15 min. In vivo experiments were performed in New Zealand rabbits and both the dinucleotide release from SiH and tear secretion were measured by means of Schirmer strips and high-pressure liquid chromatography (HPLC) analysis. Results Ap4A in vitro release experiments in hydrogel CL presented a release time 50 (RT50) of 3.9 ± 0.2 min and 3.1 ± 0.1 min for the non-ionic and the ionic CL, respectively. SiH CL released also Ap4A with RT50 values of 5.1 ± 0.1 min for the non-ionic and 2.7 ± 0.1 min for the ionic CL. In vivo experiments with SiH CL showed RT50 values of 9.3 ± 0.2 min and 8.5 ± 0.2 min for the non-ionic and the ionic respectively. The non-ionic lens Ap4A release was able to induce tear secretion above baseline tear levels for almost 360 min. Conclusion The delivery of Ap4A is slower and the effect lasts longer with non-ionic lenses than ionic lenses.