3 resultados para Rotating disk

em Universidade Complutense de Madrid


Relevância:

60.00% 60.00%

Publicador:

Resumo:

As part of the ongoing CALIFA survey, we have conducted a thorough bidimensional analysis of the ionized gas in two E/S0 galaxies, NGC 6762 and NGC 5966, aiming to shed light on the nature of their warm ionized ISM. Specifically, we present optical (3745–7300 Å) integral field spectroscopy obtained with the PMAS/PPAK integral field spectrophotometer. Its wide field-of-view (1′ × 1′) covers the entire optical extent of each galaxy down to faint continuum surface brightnesses. To recover the nebular lines, we modeled and subtracted the underlying stellar continuum from the observed spectra using the STARLIGHT spectral synthesis code. The pure emission-line spectra were used to investigate the gas properties and determine the possible sources of ionization. We show the advantages of IFU data in interpreting the complex nature of the ionized gas in NGC 6762 and NGC 5966. In NGC 6762, the ionized gas and stellar emission display similar morphologies, while the emission line morphology is elongated in NGC 5966, spanning ~6 kpc, and is oriented roughly orthogonal to the major axis of the stellar continuum ellipsoid. Whereas gas and stars are kinematically aligned in NGC 6762, the gas is kinematically decoupled from the stars in NGC 5966. A decoupled rotating disk or an “ionization cone” are two possible interpretations of the elongated ionized gas structure in NGC 5966. The latter would be the first “ionization cone” of such a dimension detected within a weak emission-line galaxy. Both galaxies have weak emission-lines relative to the continuum[EW(Hα) ≲ 3 Å] and have very low excitation, log([OIII]λ5007/Hβ) ≲ 0.5. Based on optical diagnostic ratios ([OIII]λ5007/Hβ, [NII]λ6584/Hα, [SII]λ6717, 6731/Hα, [OI]λ6300/Hα), both objects contain a LINER nucleus and an extended LINER-like gas emission. The emission line ratios do not vary significantly with radius or aperture, which indicates that the nebular properties are spatially homogeneous. The gas emission in NGC 6762 can be best explained by photoionization by pAGB stars without the need of invoking any other excitation mechanism. In the case of NGC 5966, the presence of a nuclear ionizing source seems to be required to shape the elongated gas emission feature in the “ionization cone” scenario, although ionization by pAGB stars cannot be ruled out. Further study of this object is needed to clarify the nature of its elongated gas structure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present results from the Spitzer Infrared Spectrograph spectral mapping observations of 15 local luminous infrared galaxies (LIRGs). In this paper, we investigate the spatial variations of the mid-IR emission which includes fine structure lines, molecular hydrogen lines, polycyclic aromatic features (PAHs), continuum emission, and the 9.7 μm silicate feature. We also compare the nuclear and integrated spectra. We find that the star formation takes place in extended regions (several kpc) as probed by the PAH emission, as well as the [Ne II]12.81 μm and [Ne III]15.56 μm emissions. The behavior of the integrated PAH emission and 9.7 μm silicate feature is similar to that of local starburst galaxies. We also find that the minima of the [Ne III]15.56 μm/[Ne II]12.81 μm ratio tends to be located at the nuclei and its value is lower than that of H II regions in our LIRGs and nearby galaxies. It is likely that increased densities in the nuclei of LIRGs are responsible for the smaller nuclear [Ne III]15.56 μm/[Ne II]12.81 μm ratios. This includes the possibility that some of the most massive stars in the nuclei are still embedded in ultracompact H II regions. In a large fraction of our sample, the 11.3 μm PAH emission appears more extended than the dust 5.5 μm continuum emission. We find a dependency of the 11.3 μm PAH/7.7 μm PAH and [Ne II]12.81 μm/11.3 μm PAH ratios with the age of the stellar populations. Smaller and larger ratios, respectively, indicate recent star formation. The estimated warm (300 K rotating disk at ~kpc scales, and they are in a good agreement with Hα velocity fields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To compare disk halo size in response to a glare source in eyes with an aspheric apodized diffractive multifocal intraocular lens (IOL) or aspheric monofocal IOL. SETTING: Rementeria Ophthalmological Clinic, Madrid, Spain. DESIGN: Prospective randomized masked study. METHOD: Halo radius was measured using a vision monitor (MonCv3) with low-luminance optotypes in eyes that had cataract surgery and bilateral implantion of an Acrysof Restor SN6AD1 multifocal IOL or Acrysof IQ monofocal IOL 6 to 9 months previously. The visual angle subtended by the disk halo radius was calculated in minutes of arc (arcmin). Patient complaints of halo disturbances were recorded. Monocular uncorrected distance visual acutity (UDVA) and corrected distance visual acuity (CDVA) were measured using high-contrast (96%) and low-contrast (10%) logMAR letter charts. RESULTS: The study comprised 39 eyes of 39 subjects (aged 70 to 80 years); 21 eyes had a multifocal IOL and 18 eyes a monofocal IOL. The mean halo radius was 35 arcmin larger in the multifocal IOL group than the monofocal group (P<.05). Greater halo effects were reported in the multifocal IOL group (P<.05). The mean monocular high-contrast UDVA and low-contrast UDVA did not vary significantly between groups, whereas the mean monocular high-contrast CDVA and low-contrast CDVA were significantly worse at 0.12 logMAR and 0.13 logMAR in the multifocal than in the monofocal IOL group, respectively (P <.01). A significant positive correlation was detected by multiple linear regression between the halo radius and low-contrast UDVA in the multifocal IOL group (r = 0.72, P<.001). CONCLUSIONS: The diffractive multifocal IOL gave rise to a larger disk halo size, which was correlated with a worse low-contrast UDVA.