4 resultados para Red edge emission

em Universidade Complutense de Madrid


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims. We study in detail nine sources in the direction of the young σ Orionis cluster, which is considered to be a unique site for studying stellar and substellar formation. The nine sources were selected because of their peculiar properties, such as extremely-red infrared colours or excessively strong Hα emission for their blue optical colours. Methods. We acquired high-quality, low-resolution spectroscopy (R ∼ 500) of the nine targets with ALFOSC at the Nordic Optical Telescope. We also re-analysed [24]-band photometry from MIPS/Spitzer and compiled the highest quality photometric dataset available at the ViJHK_s passbands and the four IRAC/Spitzer channels, for constructing accurate spectral energy distributions between 0.55 and 24 μm. Results. The nine targets were classified into: one Herbig Ae/Be star with a scattering edge-on disc; two G-type stars; one X-ray flaring, early-M, young star with chromospheric Hα emission; one very low-mass, accreting, young spectroscopic binary; two young objects at the brown-dwarf boundary with the characteristics of classical T Tauri stars; and two emission-line galaxies, one undergoing star formation, and another whose spectral energy distribution is dominated by an active galactic nucleus. We also discovered three infrared sources associated with overdensities in a cold cloud of the cluster centre. Conclusions. Low-resolution spectroscopy and spectral energy distributions are a vital tool for measuring the physical properties and evolution of young stars and candidates in the σ Orionis cluster.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Context. Runaway O- and early B-type stars passing through the interstellar medium at supersonic velocities and characterized by strong stellar winds may produce bow shocks that can serve as particle acceleration sites. Previous theoretical models predict the production of high-energy photons by nonthermal radiative processes, but their efficiency is still debated. Aims. We aim to test and explain the possibility of emission from the bow shocks formed by runaway stars traveling through the interstellar medium by using previous theoretical models. Methods. We applied our model to AE Aurigae, the first reported star with an X-ray detected bow shock, to BD+43 3654, in which the observations failed in detecting high-energy emission, and to the transition phase of a supergiant star in the late stages of its life. Results. From our analysis, we confirm that the X-ray emission from the bow shock produced by AE Aurigae can be explained by inverse Compton processes involving the infrared photons of the heated dust. We also predict low high-energy flux emission from the bow shock produced by BD+43 3654, and the possibility of high-energy emission from the bow shock formed by a supergiant star during the transition phase from blue to red supergiant. Conclusions. Bow shocks formed by different types of runaway stars are revealed as a new possible source of high-energy photons in our neighborhood.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Context. Runaway O- and early B-type stars passing through the interstellar medium at supersonic velocities and characterized by strong stellar winds may produce bow shocks that can serve as particle acceleration sites. Previous theoretical models predict the production of high-energy photons by nonthermal radiative processes, but their efficiency is still debated. Aims. We aim to test and explain the possibility of emission from the bow shocks formed by runaway stars traveling through the interstellar medium by using previous theoretical models. Methods. We applied our model to AE Aurigae, the first reported star with an X-ray detected bow shock, to BD+43 3654, in which the observations failed in detecting high-energy emission, and to the transition phase of a supergiant star in the late stages of its life. Results. From our analysis, we confirm that the X-ray emission from the bow shock produced by AE Aurigae can be explained by inverse Compton processes involving the infrared photons of the heated dust. We also predict low high-energy flux emission from the bow shock produced by BD+43 3654, and the possibility of high-energy emission from the bow shock formed by a supergiant star during the transition phase from blue to red supergiant. Conclusions. Bow shocks formed by different types of runaway stars are revealed as a new possible source of high-energy photons in our neighborhood.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SHARDS, an ESO/GTC Large Program, is an ultra-deep (26.5 mag) spectro-photometric survey with GTC/OSIRIS designed to select and study massive passively evolving galaxies at z=1.0-2.3 in the GOODS-N field using a set of 24 medium-band filters (FWHM ∼ 17 nm) covering the 500-950 nm spectral range. Our observing strategy has been planned to detect, for z>1 sources, the prominent Mg absorption feature (at rest-frame ∼ 280 nm), a distinctive, necessary, and sufficient feature of evolved stellar populations (older than 0.5 Gyr). These observations are being used to: (1) derive for the first time an unbiased sample of high-z quiescent galaxies, which extends to fainter magnitudes the samples selected with color techniques and spectroscopic surveys; (2) derive accurate ages and stellar masses based on robust measurements of spectral features such as the Mg_UV or D(4000) indices; (3) measure their redshift with an accuracy Δz/(1+z)<0.02; and (4) study emission-line galaxies (starbursts and AGN) up to very high redshifts. The well-sampled optical SEDs provided by SHARDS for all sources in the GOODS-N field are a valuable complement for current and future surveys carried out with other telescopes (e.g., Spitzer, HST, and Herschel).