2 resultados para RESPONSE ERROR
em Universidade Complutense de Madrid
Resumo:
Trials in a temporal two-interval forced-choice discrimination experiment consist of two sequential intervals presenting stimuli that differ from one another as to magnitude along some continuum. The observer must report in which interval the stimulus had a larger magnitude. The standard difference model from signal detection theory analyses poses that order of presentation should not affect the results of the comparison, something known as the balance condition (J.-C. Falmagne, 1985, in Elements of Psychophysical Theory). But empirical data prove otherwise and consistently reveal what Fechner (1860/1966, in Elements of Psychophysics) called time-order errors, whereby the magnitude of the stimulus presented in one of the intervals is systematically underestimated relative to the other. Here we discuss sensory factors (temporary desensitization) and procedural glitches (short interstimulus or intertrial intervals and response bias) that might explain the time-order error, and we derive a formal model indicating how these factors make observed performance vary with presentation order despite a single underlying mechanism. Experimental results are also presented illustrating the conventional failure of the balance condition and testing the hypothesis that time-order errors result from contamination by the factors included in the model.
Resumo:
It was recently shown [Phys. Rev. Lett. 110, 227201 (2013)] that the critical behavior of the random-field Ising model in three dimensions is ruled by a single universality class. This conclusion was reached only after a proper taming of the large scaling corrections of the model by applying a combined approach of various techniques, coming from the zero-and positive-temperature toolboxes of statistical physics. In the present contribution we provide a detailed description of this combined scheme, explaining in detail the zero-temperature numerical scheme and developing the generalized fluctuation-dissipation formula that allowed us to compute connected and disconnected correlation functions of the model. We discuss the error evolution of our method and we illustrate the infinite limit-size extrapolation of several observables within phenomenological renormalization. We present an extension of the quotients method that allows us to obtain estimates of the critical exponent a of the specific heat of the model via the scaling of the bond energy and we discuss the self-averaging properties of the system and the algorithmic aspects of the maximum-flow algorithm used.