4 resultados para REMNANT

em Universidade Complutense de Madrid


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Type Ia supernovae are thought to occur when a white dwarf made of carbon and oxygen accretes sufficient mass to trigger a thermonuclear explosion(1). The accretion could be slow, from an unevolved (main-sequence) or evolved (subgiant or giant) star(2,3) (the single-degenerate channel), or rapid, as the primary star breaks up a smaller orbiting white dwarf(3,4) (the double-degenerate channel). A companion star will survive the explosion only in the single-degenerate channel(5). Both channels might contribute to the production of type Ia supernovae(6,7), but the relative proportions of their contributions remain a fundamental puzzle in astronomy. Previous searches for remnant companions have revealed one possible case for SN 1572 (refs 8, 9), although that has been questioned(10). More recently, observations have restricted surviving companions to be small, main-sequence stars(11-13), ruling out giant companions but still allowing the single-degenerate channel. Here we report the results of a search for surviving companions of the progenitor of SN 1006 (ref. 14). None of the stars within 4 arc minutes of the apparent site of the explosion is associated with the supernova remnant, and we can firmly exclude all giant and subgiant stars from being companions of the progenitor. In combination with previous results, our findings indicate that fewer than 20 per cent of type Ia supernovae occur through the single-degenerate channel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present Keck I MOSFIRE spectroscopy in the Y and H bands of GDN-8231, a massive, compact, star-forming galaxy at a redshift of z ~ 1.7. Its spectrum reveals both Hα and [Nii] emission lines and strong Balmer absorption lines. The Hα and Spitzer MIPS 24 μm fluxes are both weak, thus indicating a low star-formation rate of SFR≲5-10 M_⨀ yr−1. This, added to a relatively young age of ~700 Myr measured from the absorption lines, provides the first direct evidence for a distant galaxy being caught in the act of rapidly shutting down its star formation. Such quenching allows GDN-8231 to become a compact, quiescent galaxy, similar to three other galaxies in our sample, by z ~ 1.5. Moreover, the color profile of GDN-8231 shows a bluer center, consistent with the predictions of recent simulations for an early phase of inside-out quenching. Its line-of-sight velocity dispersion for the gas, σ_LOG^gas = 127 ± 32 km s^−1, is nearly 40% smaller than that of its stars, σ_LOG^* = 215 ± 35 km s^−1. High-resolution hydro-simulations of galaxies explain such apparently colder gas kinematics of up to a factor of ~1.5 with rotating disks being viewed at different inclinations and/or centrally concentrated star-forming regions. A clear prediction is that their compact, quiescent descendants preserve some remnant rotation from their star-forming progenitors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims. We report results of an X-ray study of the supernova remnant (SNR) G344.7-0.1 and the point-like X-ray source located at the geometrical center of the SNR radio structure. Methods. The morphology and spectral properties of the remnant and the central X-ray point-like source were studied using data from the XMM-Newton and Chandra satellites. Archival radio data and infrared Spitzer observations at 8 and 24 mu m were used to compare and study its multi-band properties at different wavelengths. Results. The XMM-Newton and Chandra observations reveal that the overall X-ray emission of G344.7-0.1 is extended and correlates very well with regions of bright radio and infrared emission. The X-ray spectrum is dominated by prominent atomic emission lines. These characteristics suggest that the X-ray emission originated in a thin thermal plasma, whose radiation is represented well by a plane-parallel shock plasma model (PSHOCK). Our study favors the scenario in which G344.7-0.1 is a 6 x 10^3 year old SNR expanding in a medium with a high density gradient and is most likely encountering a molecular cloud on the western side. In addition, we report the discovery of a soft point-like X-ray source located at the geometrical center of the radio SNR structure. The object presents some characteristics of the so-called compact central objects (CCO). However, its neutral hydrogen absorption column (N_H) is inconsistent with that of the SNR. Coincident with the position of the source, we found infrared and optical objects with typical early-K star characteristics. The X-ray source may be a foreground star or the CCO associated with the SNR. If this latter possibility were confirmed, the point-like source would be the farthest CCO detected so far and the eighth member of the new population of isolated and weakly magnetized neutron stars.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We quantify the evolution of the stellar mass functions (SMFs) of star-forming and quiescent galaxies as a function of morphology from z ∼ 3 to the present. Our sample consists of ∼50 000 galaxies in the CANDELS fields (∼880 arcmin^2), which we divide into four main morphological types, i.e. pure bulge-dominated systems, pure spiral disc-dominated, intermediate two-component bulge+disc systems and irregular disturbed galaxies. At z ∼ 2, 80 per cent of the stellar mass density of star-forming galaxies is in irregular systems. However, by z ∼ 0.5, irregular objects only dominate at stellar masses below 10^9 M_⊙. A majority of the star-forming irregulars present at z ∼ 2 undergo a gradual transformation from disturbed to normal spiral disc morphologies by z ∼ 1 without significant interruption to their star formation. Rejuvenation after a quenching event does not seem to be common except perhaps for the most massive objects, because the fraction of bulge-dominated star-forming galaxies with M^*/M_⊙ > 10^10.7 reaches 40 per cent at z < 1. Quenching implies the presence of a bulge: the abundance of massive red discs is negligible at all redshifts over 2 dex in stellar mass. However, the dominant quenching mechanism evolves. At z > 2, the SMF of quiescent galaxies above M^* is dominated by compact spheroids. Quenching at this early epoch destroys the disc and produces a compact remnant unless the star-forming progenitors at even higher redshifts are significantly more dense. At 1 < z < 2, the majority of newly quenched galaxies are discs with a significant central bulge. This suggests that mass quenching at this epoch starts from the inner parts and preserves the disc. At z < 1, the high-mass end of the passive SMF is globally in place and the evolution mostly happens at stellar masses below 10^10 M_⊙. These low-mass galaxies are compact, bulge-dominated systems, which were environmentally quenched: destruction of the disc through ram-pressure stripping is the likely process.