3 resultados para RANGE ORDER

em Universidade Complutense de Madrid


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We study theoretically the effect of a new type of blocklike positional disorder on the effective electromagnetic properties of one-dimensional chains of resonant, high-permittivity dielectric particles, where particles are arranged into perfectly well-ordered blocks whose relative position is a random variable. This creates a finite order correlation length that mimics the situation encountered in metamaterials fabricated through self-assembled techniques, whose structures often display short-range order between near neighbors but long-range disorder, due to stacking defects. Using a spectral theory approach combined with a principal component statistical analysis, we study, in the long-wavelength regime, the evolution of the electromagnetic response when the composite filling fraction and the block size are changed. Modifications in key features of the resonant response (amplitude, width, etc.) are investigated, showing a regime transition for a filling fraction around 50%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider exciton optical absorption in quasiperiodic lattices, focusing our attention on the Fibonacci case as a typical example. The absorption spectrum is evaluated by solving numerically the equation of motion of the Frenkel-exciton problem on the lattice, in which on-site energies take on two values according to the Fibonacci sequence. We find that the quasiperiodic order causes the occurrence of well-defined characteristic features in the absorption spectra. We also develop an analytical method that relates satellite lines with the Fourier pattern of the lattice. Our predictions can be used to determine experimentally the long-range quasiperiodic order from optical measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We discover novel topological effects in the one-dimensional Kitaev chain modified by long-range Hamiltonian deformations in the hopping and pairing terms. This class of models display symmetry-protected topological order measured by the Berry/Zak phase of the lower-band eigenvector and the winding number of the Hamiltonians. For exponentially decaying hopping amplitudes, the topological sector can be significantly augmented as the penetration length increases, something experimentally achievable. For power-law decaying superconducting pairings, the massless Majorana modes at the edges get paired together into a massive nonlocal Dirac fermion localized at both edges of the chain: a new topological quasiparticle that we call topological massive Dirac fermion. This topological phase has fractional topological numbers as a consequence of the long-range couplings. Possible applications to current experimental setups and topological quantum computation are also discussed.