7 resultados para RANDOM-FIELD

em Universidade Complutense de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

By performing a high-statistics simulation of the D = 4 random-field Ising model at zero temperature for different shapes of the random-field distribution, we show that the model is ruled by a single universality class. We compute to a high accuracy the complete set of critical exponents for this class, including the correction-to-scaling exponent. Our results indicate that in four dimensions (i) dimensional reduction as predicted by the perturbative renormalization group does not hold and (ii) three independent critical exponents are needed to describe the transition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It was recently shown [Phys. Rev. Lett. 110, 227201 (2013)] that the critical behavior of the random-field Ising model in three dimensions is ruled by a single universality class. This conclusion was reached only after a proper taming of the large scaling corrections of the model by applying a combined approach of various techniques, coming from the zero-and positive-temperature toolboxes of statistical physics. In the present contribution we provide a detailed description of this combined scheme, explaining in detail the zero-temperature numerical scheme and developing the generalized fluctuation-dissipation formula that allowed us to compute connected and disconnected correlation functions of the model. We discuss the error evolution of our method and we illustrate the infinite limit-size extrapolation of several observables within phenomenological renormalization. We present an extension of the quotients method that allows us to obtain estimates of the critical exponent a of the specific heat of the model via the scaling of the bond energy and we discuss the self-averaging properties of the system and the algorithmic aspects of the maximum-flow algorithm used.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present a microcanonical Monte Carlo simulation of the site-diluted Potts model in three dimensions with eight internal states, partly carried out on the citizen supercomputer Ibercivis. Upon dilution, the pure model’s first-order transition becomes of the second order at a tricritical point. We compute accurately the critical exponents at the tricritical point. As expected from the Cardy-Jacobsen conjecture, they are compatible with their random field Ising model counterpart. The conclusion is further reinforced by comparison with older data for the Potts model with four states.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study numerically the dynamics of a one-electron wavepacket in a two-dimensional random lattice with long-range correlated diagonal disorder in the presence of a uniform electric field. The time-dependent Schrodinger equation is used for this purpose. We find that the wavepacket displays Bloch-like oscillations associated with the appearance of a phase of delocalized states in the strong correlation regime. The amplitude of oscillations directly reflects the bandwidth of the phase and allows us to measure it. The oscillations reveal two main frequencies whose values are determined by the structure of the underlying potential in the vicinity of the wavepacket maximum.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the critical properties of the four-state commutative random permutation glassy Potts model in three and four dimensions by means of Monte Carlo simulations and a finite-size scaling analysis. By using a field programmable gate array, we have been able to thermalize a large number of samples of systems with large volume. This has allowed us to observe a spin-glass ordered phase in d=4 and to study the critical properties of the transition. In d=3, our results are consistent with the presence of a Kosterlitz-Thouless transition, but also with different scenarios: transient effects due to a value of the lower critical dimension slightly below 3 could be very important.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We analyze the far-field intensity distribution of binary phase gratings whose strips present certain randomness in their height. A statistical analysis based on the mutual coherence function is done in the plane just after the grating. Then, the mutual coherence function is propagated to the far field and the intensity distribution is obtained. Generally, the intensity of the diffraction orders decreases in comparison to that of the ideal perfect grating. Several important limit cases, such as low- and high-randomness perturbed gratings, are analyzed. In the high-randomness limit, the phase grating is equivalent to an amplitude grating plus a “halo.” Although these structures are not purely periodic, they behave approximately as a diffraction grating.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we obtain analytical expressions for the near-and far-field diffraction of random Ronchi diffraction gratings where the slits of the grating are randomly displaced around their periodical positions. We theoretically show that the effect of randomness in the position of the slits of the grating produces a decrease of the contrast and even disappearance of the self-images for high randomness level at the near field. On the other hand, it cancels high-order harmonics in far field, resulting in only a few central diffraction orders. Numerical simulations by means of the Rayleigh–Sommerfeld diffraction formula are performed in order to corroborate the analytical results. These results are of interest for industrial and technological applications where manufacture errors need to be considered.