4 resultados para Quantum system

em Universidade Complutense de Madrid


Relevância:

70.00% 70.00%

Publicador:

Resumo:

We study nonequilibrium processes in an isolated quantum system-the Dicke model-focusing on the role played by the transition from integrability to chaos and the presence of excited-state quantum phase transitions. We show that both diagonal and entanglement entropies are abruptly increased by the onset of chaos. Also, this increase ends in both cases just after the system crosses the critical energy of the excited-state quantum phase transition. The link between entropy production, the development of chaos, and the excited-state quantum phase transition is more clear for the entanglement entropy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a realistic scheme to quantum simulate the so-far experimentally unobserved topological Mott insulator phase-an interaction-driven topological insulator-using cold atoms in an optical Lieb lattice. To this end, we study a system of spinless fermions in a Lieb lattice, exhibiting repulsive nearest-and next-to-nearest-neighbor interactions and derive the associated zero-temperature phase diagram within mean-field approximation. In particular, we analyze how the interactions can dynamically generate a charge density wave ordered, a nematic, and a topologically nontrivial quantum anomalous Hall phase. We characterize the topology of the different phases by the Chern number and discuss the possibility of phase coexistence. Based on the identified phases, we propose a realistic implementation of this model using cold Rydberg-dressed atoms in an optical lattice. The scheme, which allows one to access, in particular, the topological Mott insulator phase, robustly and independently of its exact position in parameter space, merely requires global, always-on off-resonant laser coupling to Rydberg states and is feasible with state-of-the-art experimental techniques that have already been demonstrated in the laboratory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We introduce a new class of generalized isotropic Lipkin–Meshkov–Glick models with su(m+1) spin and long-range non-constant interactions, whose non-degenerate ground state is a Dicke state of su(m+1) type. We evaluate in closed form the reduced density matrix of a block of Lspins when the whole system is in its ground state, and study the corresponding von Neumann and Rényi entanglement entropies in the thermodynamic limit. We show that both of these entropies scale as a log L when L tends to infinity, where the coefficient a is equal to (m  −  k)/2 in the ground state phase with k vanishing magnon densities. In particular, our results show that none of these generalized Lipkin–Meshkov–Glick models are critical, since when L-->∞ their Rényi entropy R_q becomes independent of the parameter q. We have also computed the Tsallis entanglement entropy of the ground state of these generalized su(m+1) Lipkin–Meshkov–Glick models, finding that it can be made extensive by an appropriate choice of its parameter only when m-k≥3. Finally, in the su(3) case we construct in detail the phase diagram of the ground state in parameter space, showing that it is determined in a simple way by the weights of the fundamental representation of su(3). This is also true in the su(m+1) case; for instance, we prove that the region for which all the magnon densities are non-vanishing is an (m  +  1)-simplex in R^m whose vertices are the weights of the fundamental representation of su(m+1).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Performing experiments on small-scale quantum computers is certainly a challenging endeavor. Many parameters need to be optimized to achieve high-fidelity operations. This can be done efficiently for operations acting on single qubits, as errors can be fully characterized. For multiqubit operations, though, this is no longer the case, as in the most general case, analyzing the effect of the operation on the system requires a full state tomography for which resources scale exponentially with the system size. Furthermore, in recent experiments, additional electronic levels beyond the two-level system encoding the qubit have been used to enhance the capabilities of quantum-information processors, which additionally increases the number of parameters that need to be controlled. For the optimization of the experimental system for a given task (e.g., a quantum algorithm), one has to find a satisfactory error model and also efficient observables to estimate the parameters of the model. In this manuscript, we demonstrate a method to optimize the encoding procedure for a small quantum error correction code in the presence of unknown but constant phase shifts. The method, which we implement here on a small-scale linear ion-trap quantum computer, is readily applicable to other AMO platforms for quantum-information processing.