15 resultados para Power law

em Universidade Complutense de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context. Accretion onto supermassive black holes is believed to occur mostly in obscured active galactic nuclei (AGN). Such objects are proving rather elusive in surveys of distant galaxies, including those at X-ray energies. Aims. Our main goal is to determine whether the revised IRAC criteria of Donley et al. (2012, ApJ, 748, 142; objects with an infrared (IR) power-law spectral shape), are effective at selecting X-ray type-2 AGN (i.e., absorbed N_H > 10^22 cm^-2). Methods. We present the results from the X-ray spectral analysis of 147 AGN selected by cross-correlating the highest spectral quality ultra-deep XMM-Newton and the Spitzer/IRAC catalogues in the Chandra Deep Field South. Consequently it is biased towards sources with high S/N X-ray spectra. In order to measure the amount of intrinsic absorption in these sources, we adopt a simple X-ray spectral model that includes a power-law modified by intrinsic absorption at the redshift of each source and a possible soft X-ray component. Results. We find 21/147 sources to be heavily absorbed but the uncertainties in their obscuring column densities do not allow us to confirm their Compton-Thick nature without resorting to additional criteria. Although IR power-law galaxies are less numerous in our sample than IR non-power-law galaxies (60 versus 87 respectively), we find that the fraction of absorbed (N_H^intr > 10^22 cm^-2) AGN is significantly higher (at about 3 sigma level) for IR-power-law sources (similar to 2/3) than for those sources that do not meet this IR selection criteria (~1/2). This behaviour is particularly notable at low luminosities, but it appears to be present, although with a marginal significance, at all luminosities. Conclusions. We therefore conclude that the IR power-law method is efficient in finding X-ray-absorbed sources. We would then expect that the long-sought dominant population of absorbed AGN is abundant among IR power-law spectral shape sources not detected in X-rays.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We define a sample of 62 galaxies in the Chandra Deep Field-North whose Spitzer IRAC SEDs exhibit the characteristic power-law emission expected of luminous AGNs. We study the multiwavelength properties of this sample and compare the AGNs selected in this way to those selected via other Spitzer color-color criteria. Only 55% of the power-law galaxies are detected in the X-ray catalog at exposures of >0.5 Ms, although a search for faint emission results in the detection of 85% of the power-law galaxies at the ≥2.5 σ detection level. Most of the remaining galaxies are likely to host AGNs that are heavily obscured in the X-ray. Because the power-law selection requires the AGNs to be energetically dominant in the near- and mid-infrared, the power-law galaxies comprise a significant fraction of the Spitzer-detected AGN population at high luminosities and redshifts. The high 24 μm detection fraction also points to a luminous population. The power-law galaxies comprise a subset of color-selected AGN candidates. A comparison with various mid-infrared color selection criteria demonstrates that while the color-selected samples contain a larger fraction of the X-ray-luminous AGNs, there is evidence that these selection techniques also suffer from a higher degree of contamination by star-forming galaxies in the deepest exposures. Considering only those power-law galaxies detected in the X-ray catalog, we derive an obscured fraction of 68% (2 : 1). Including all of the power-law galaxies suggests an obscured fraction of <81% (4 : 1).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present coordinated multiwavelength observations of the bright, nearby BL Lacertae object Mrk 421 taken in 2013 January–March, involving GASP-WEBT, Swift, NuSTAR, Fermi-LAT, MAGIC, VERITAS, and other collaborations and instruments, providing data from radio to very high energy (VHE) γ-ray bands. NuSTAR yielded previously unattainable sensitivity in the 3–79 keV range, revealing that the spectrum softens when the source is dimmer until the X-ray spectral shape saturates into a steep G » 3 power law, with no evidence for an exponential cutoff or additional hard components up "aprox" 80keV. For the first time, we observed both the synchrotron and the inverse-Compton peaks of the spectral energy distribution (SED) simultaneously shifted to frequencies below the typical quiescent state by an order of magnitude. The fractional variability as a function of photon energy shows a double-bump structure that relates to the two bumps of the broadband SED. In each bump, the variability increases with energy, which, in the framework of the synchrotron self-Compton model, implies that the electrons with higher energies are more variable. The measured multi band variability, the significant X-ray-toVHE correlation down to some of the lowest fluxes ever observed in both bands, the lack of correlation between optical/UV and X-ray flux, the low degree of polarization and its significant (random) variations, the short estimated electron cooling time, and the significantly longer variability timescale observed in the NuSTAR light curves point toward in situ electron acceleration and suggest that there are multiple compact regions contributing to the broadband emission of Mrk 421 during low-activity states.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We study electron dynamics in a two-band δ-doped semiconductor within the envelope-function approximation. Using a simple parametrization of the confining potential arising from the ionized donors in the δ -doping layer, we are able to find exact solutions of the Dirac-type equation describing the coupling of host bands. As an application we then consider Si δ -doped GaAs. In particular we find that the ground subband energy scales as a power law of the Si concentration per unit area in a wide range of doping levels. In addition, the coupling of host bands leads to a depression of the subband energy due to nonparabolicity effects.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The fact that fast oscillating homogeneous scalar fields behave as perfect fluids in average and their intrinsic isotropy have made these models very fruitful in cosmology. In this work we will analyse the perturbations dynamics in these theories assuming general power law potentials V(ϕ) = λ|ϕ|^n /n. At leading order in the wavenumber expansion, a simple expression for the effective sound speed of perturbations is obtained c_eff^ 2  = ω = (n − 2)/(n + 2) with ω the effective equation of state. We also obtain the first order correction in k^ 2/ω_eff^ 2 , when the wavenumber k of the perturbations is much smaller than the background oscillation frequency, ω_eff. For the standard massive case we have also analysed general anharmonic contributions to the effective sound speed. These results are reached through a perturbed version of the generalized virial theorem and also studying the exact system both in the super-Hubble limit, deriving the natural ansatz for δϕ; and for sub-Hubble modes, exploiting Floquet’s theorem.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We show numeric evidence that, at low enough temperatures, the potential energy density of a glass-forming liquid fluctuates over length scales much larger than the interaction range. We focus on the behavior of translationally invariant quantities. The growing correlation length is unveiled by studying the finite-size effects. In the thermodynamic limit, the specific heat and the relaxation time diverge as a power law. Both features point towards the existence of a critical point in the metastable supercooled liquid phase.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Clusters of galaxies are expected to be reservoirs of cosmic rays (CRs) that should produce diffuse γ-ray emission due to their hadronic interactions with the intra-cluster medium. The nearby Perseus cool-core cluster, identified as the most promising target to search for such an emission, has been observed with the MAGIC telescopes at very-high energies (VHE, E ≥ 100 GeV) for a total of 253 hr from 2009 to 2014. The active nuclei of NGC 1275, the central dominant galaxy of the cluster, and IC 310, lying at about 0.6º from the centre, have been detected as point-like VHE γ-ray emitters during the first phase of this campaign. We report an updated measurement of the NGC 1275 spectrum, which is described well by a power law with a photon index Γ = 3.6 ± 0.2_(stat) ± 0.2_(syst) between 90 GeV and 1200 GeV. We do not detect any diffuse γ-ray emission from the cluster and so set stringent constraints on its CR population. To bracket the uncertainties over the CR spatial and spectral distributions, we adopt different spatial templates and power-law spectral indexes α. For α = 2.2, the CR-to-thermal pressure within the cluster virial radius is constrained to be ≤ 1 − 2%, except if CRs can propagate out of the cluster core, generating a flatter radial distribution and releasing the CR-to-thermal pressure constraint to ≤ 20%. Assuming that the observed radio mini-halo of Perseus is generated by secondary electrons from CR hadronic interactions, we can derive lower limits on the central magnetic field, B_(0), that depend on the CR distribution. For α = 2.2, B_(0) ≥ 5 − 8 µG, which is below the ∼25 µG inferred from Faraday rotation measurements, whereas for α ≤ 2.1, the hadronic interpretation of the diffuse radio emission contrasts with our γ-ray flux upper limits independently of the magnetic field strength.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Infrared selection is a potentially powerful way to identify heavily obscured AGNs missed in even the deepest X-ray surveys. Using a 24 μm-selected sample in GOODS-S, we test the reliability and completeness of three infrared AGN selection methods: (1) IRAC color-color selection, (2) IRAC power-law selection, and (3) IR-excess selection; we also evaluate a number of IR-excess approaches. We find that the vast majority of non-power-law IRAC color-selected AGN candidates in GOODS-S have colors consistent with those of star-forming galaxies. Contamination by star-forming galaxies is most prevalent at low 24 μm flux densities (~100 μJy) and high redshifts (z ~ 2), but the fraction of potential contaminants is still high (~50%) at 500 μJy, the highest flux density probed reliably by our survey. AGN candidates selected via a simple, physically motivated power-law criterion ("power-law galaxies," or PLGs), however, appear to be reliable. We confirm that the IR-excess methods successfully identify a number of AGNs, but we also find that such samples may be significantly contaminated by star-forming galaxies. Adding only the secure Spitzer-selected PLG, color-selected, IR-excess, and radio/IR-selected AGN candidates to the deepest X-ray-selected AGN samples directly increases the number of known X-ray AGNs (84) by 54%-77%, and implies an increase to the number of 24 μm-detected AGNs of 71%-94%. Finally, we show that the fraction of MIR sources dominated by an AGN decreases with decreasing MIR flux density, but only down to f_24 μ m = 300 μJy. Below this limit, the AGN fraction levels out, indicating that a nonnegligible fraction (~10%) of faint 24 μm sources (the majority of which are missed in the X-ray) are powered not by star formation, but by the central engine. The fraction of all AGNs (regardless of their MIR properties) exceeds 15% at all 24 μm flux densities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present a study of the Galactic Center region as a possible source of both secondary gamma-ray and neutrino fluxes from annihilating dark matter. We have studied the gamma-ray flux observed by the High Energy Stereoscopic System (HESS) from the J1745-290 Galactic Center source. The data are well fitted as annihilating dark matter in combination with an astrophysical background. The analysis was performed by means of simulated gamma spectra produced by Monte Carlo event generators packages. We analyze the differences in the spectra obtained by the various Monte Carlo codes developed so far in particle physics. We show that, within some uncertainty, the HESS data can be fitted as a signal from a heavy dark matter density distribution peaked at the Galactic Center, with a power-law for the background with a spectral index which is compatible with the Fermi-Large Area Telescope (LAT) data from the same region. If this kind of dark matter distribution generates the gamma-ray flux observed by HESS, we also expect to observe a neutrino flux. We show prospective results for the observation of secondary neutrinos with the Astronomy with a Neutrino Telescope and Abyss environmental RESearch project (ANTARES), Ice Cube Neutrino Observatory (Ice Cube) and the Cubic Kilometer Neutrino Telescope (KM3NeT). Prospects solely depend on the device resolution angle when its effective area and the minimum energy threshold are fixed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Context. In February-March 2014, the MAGIC telescopes observed the high-frequency peaked BL Lac 1ES 1011+496 (z=0.212) in flaring state at very-high energy (VHE, E>100GeV). The flux reached a level more than 10 times higher than any previously recorded flaring state of the source. Aims. Description of the characteristics of the flare presenting the light curve and the spectral parameters of the night-wise spectra and the average spectrum of the whole period. From these data we aim at detecting the imprint of the Extragalactic Background Light (EBL) in the VHE spectrum of the source, in order to constrain its intensity in the optical band. Methods. We analyzed the gamma-ray data from the MAGIC telescopes using the standard MAGIC software for the production of the light curve and the spectra. For the constraining of the EBL we implement the method developed by the H.E.S.S. collaboration in which the intrinsic energy spectrum of the source is modeled with a simple function (< 4 parameters), and the EBL-induced optical depth is calculated using a template EBL model. The likelihood of the observed spectrum is then maximized, including a normalization factor for the EBL opacity among the free parameters. Results. The collected data allowed us to describe the flux changes night by night and also to produce di_erential energy spectra for all nights of the observed period. The estimated intrinsic spectra of all the nights could be fitted by power-law functions. Evaluating the changes in the fit parameters we conclude that the spectral shape for most of the nights were compatible, regardless of the flux level, which enabled us to produce an average spectrum from which the EBL imprint could be constrained. The likelihood ratio test shows that the model with an EBL density 1:07 (-0.20,+0.24)stat+sys, relative to the one in the tested EBL template (Domínguez et al. 2011), is preferred at the 4:6 σ level to the no-EBL hypothesis, with the assumption that the intrinsic source spectrum can be modeled as a log-parabola. This would translate into a constraint of the EBL density in the wavelength range [0.24 μm,4.25 μm], with a peak value at 1.4 μm of λF_ = 12:27^(+2:75)_ (-2:29) nW m^(-2) sr^(-1), including systematics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The BL Lac object 1ES 1011+496 was discovered at Very High Energy (VHE, E>100GeV) γ-rays by MAGIC in spring 2007. Before that the source was little studied in different wavelengths. Therefore a multi-wavelength (MWL) campaign was organized in spring 2008. Along MAGIC, the MWL campaign included the Mets¨ahovi radio observatory, Bell and KVA optical telescopes and the Swift and AGILE satellites. MAGIC observations span from March to May, 2008 for a total of 27.9 hours, of which 19.4 hours remained after quality cuts. The light curve showed no significant variability yielding an integral flux above 200 GeV of (1.3 ± 0.3) × 10^(−11) photons cm^(−2) s^( −1) . The differential VHE spectrum could be described with a power-law function with a spectral index of 3.3 ± 0.4. Both results were similar to those obtained during the discovery. Swift XRT observations revealed an X-ray flare, characterized by a harder-when-brighter trend, as is typical for high synchrotron peak BL Lac objects (HBL). Strong optical variability was found during the campaign, but no conclusion on the connection between the optical and VHE γ-ray bands could be drawn. The contemporaneous SED shows a synchrotron dominated source, unlike concluded in previous work based on non-simultaneous data, and is well described by a standard one–zone synchrotron self–Compton model. We also performed a study on the source classification. While the optical and X-ray data taken during our campaign show typical characteristics of an HBL, we suggest, based on archival data, that 1ES 1011+496 is actually a borderline case between intermediate and high synchrotron peak frequency BL Lac objects.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Context. 1ES 1011+496 (z = 0.212) was discovered in very high-energy (VHE, E >100 GeV) γ rays with MAGIC in 2007. The absence of simultaneous data at lower energies led to an incomplete characterization of the broadband spectral energy distribution (SED). Aims. We study the source properties and the emission mechanisms, probing whether a simple one-zone synchrotron self-Compton (SSC) scenario is able to explain the observed broadband spectrum. Methods. We analyzed data in the range from VHE to radio data from 2011 and 2012 collected by MAGIC, Fermi-LAT, Swift, KVA, OVRO, and Metsähovi in addition to optical polarimetry data and radio maps from the Liverpool Telescope and MOJAVE. Results. The VHE spectrum was fit with a simple power law with a photon index of 3.69 ± 0.22 and a flux above 150 GeV of (1.46±0.16)×10^(−11) ph cm^(−2) s^(−1) . The source 1ES 1011+496 was found to be in a generally quiescent state at all observed wavelengths, showing only moderate variability from radio to X-rays. A low degree of polarization of less than 10% was measured in optical, while some bright features polarized up to 60% were observed in the radio jet. A similar trend in the rotation of the electric vector position angle was found in optical and radio. The radio maps indicated a superluminal motion of 1.8 ± 0.4 c, which is the highest speed statistically significant measured so far in a high-frequency-peaked BL Lac. Conclusions. For the first time, the high-energy bump in the broadband SED of 1ES 1011+496 could be fully characterized from 0.1 GeV to 1 TeV, which permitted a more reliable interpretation within the one-zone SSC scenario. The polarimetry data suggest that at least part of the optical emission has its origin in some of the bright radio features, while the low polarization in optical might be due to the contribution of parts of the radio jet with different orientations of the magnetic field with respect to the optical emission.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report a measurement of the flux of cosmic rays with unprecedented precision and Statistics using the Pierre Auger Observatory Based on fluorescence observations in coincidence with at least one Surface detector we derive a spectrum for energies above 10(18) eV We also update the previously published energy spectrum obtained with the surface detector array The two spectra are combined addressing the systematic uncertainties and, in particular. the influence of the energy resolution on the spectral shape The spectrum can be described by a broken power law E-gamma with index gamma = 3 3 below the ankle which is measured at log(10)(E-ankle/eV) = 18 6 Above the ankle the spectrum is described by a power law with index 2 6 followed by a flux suppression, above about log(10)(E/eV) = 19 5, detected with high statistical significance (C) 2010 Elsevier B V All rights reserved

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We discover novel topological effects in the one-dimensional Kitaev chain modified by long-range Hamiltonian deformations in the hopping and pairing terms. This class of models display symmetry-protected topological order measured by the Berry/Zak phase of the lower-band eigenvector and the winding number of the Hamiltonians. For exponentially decaying hopping amplitudes, the topological sector can be significantly augmented as the penetration length increases, something experimentally achievable. For power-law decaying superconducting pairings, the massless Majorana modes at the edges get paired together into a massive nonlocal Dirac fermion localized at both edges of the chain: a new topological quasiparticle that we call topological massive Dirac fermion. This topological phase has fractional topological numbers as a consequence of the long-range couplings. Possible applications to current experimental setups and topological quantum computation are also discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Geminga pulsar, one of the brighest gamma-ray sources, is a promising candidate for emission of very-high-energy (VHE > 100 GeV) pulsed gamma rays. Also, detection of a large nebula have been claimed by water Cherenkov instruments. We performed deep observations of Geminga with the MAGIC telescopes, yielding 63 hours of good-quality data, and searched for emission from the pulsar and pulsar wind nebula. We did not find any significant detection, and derived 95% confidence level upper limits. The resulting upper limits of 5.3 × 10^(−13) TeV cm^(−2)s^(−1) for the Geminga pulsar and 3.5 × 10^(−12) TeV cm^(−2)s^(−1) for the surrounding nebula at 50 GeV are the most constraining ones obtained so far at VHE. To complement the VHE observations, we also analyzed 5 years of Fermi-LAT data from Geminga, finding that the sub-exponential cut-off is preferred over the exponential cut-off that has been typically used in the literature. We also find that, above 10 GeV, the gamma-ray spectra from Geminga can be described with a power law with index softer than 5. The extrapolation of the power-law Fermi-LAT pulsed spectra to VHE goes well below the MAGIC upper limits, indicating that the detection of pulsed emission from Geminga with the current generation of Cherenkov telescopes is very difficult.