2 resultados para Português Não-universitário (K-12)
em Universidade Complutense de Madrid
Resumo:
We present a library of Penn State Fiber Optic Echelle (FOE) observations of a sample of field stars with spectral types F to M and luminosity classes V to I. The spectral coverage is from 3800 to 10000 Å with a nominal resolving power of 12,000. These spectra include many of the spectral lines most widely used as optical and near-infrared indicators of chromospheric activity such as the Balmer lines (Hα to H epsilon), Ca II H & K, the Mg I b triplet, Na I D_1, D_2, He I D_3, and Ca II IRT lines. There are also a large number of photospheric lines, which can also be affected by chromospheric activity, and temperature-sensitive photospheric features such as TiO bands. The spectra have been compiled with the goal of providing a set of standards observed at medium resolution. We have extensively used such data for the study of active chromosphere stars by applying a spectral subtraction technique. However, the data set presented here can also be utilized in a wide variety of ways ranging from radial velocity templates to study of variable stars and stellar population synthesis. This library can also be used for spectral classification purposes and determination of atmospheric parameters (T_eff, log g, [Fe/H]). A digital version of all the fully reduced spectra is available via ftp and the World Wide Web (WWW) in FITS format.
Resumo:
We present NH_3(1,1) and (2,2) observations of MBM 12, the closest known molecular cloud (65-pc distance), aimed at finding evidence for on-going star formation processes, No local temperature (with a T_rot upper limit of 12 K) or linewidth enhancement is found, which suggests that the area of the cloud that we have mapped (∼ 15-arcmin size) is not currently forming stars. Therefore this nearby 'starless' molecular gas region is an ideal laboratory to study the physical conditions preceding new star formation. A radio continuum source has been found in Very Large Array archive data, close to but outside the NH_3 emission. This source is likely to be a background object.