2 resultados para Population-model
em Universidade Complutense de Madrid
Resumo:
Leishmaniasis, caused by Leishmania infantum, is a vector-borne zoonotic disease that is endemic to the Mediterranean basin. The potential of rabbits and hares to serve as competent reservoirs for the disease has recently been demonstrated, although assessment of the importance of their role on disease dynamics is hampered by the absence of quantitative knowledge on the accuracy of diagnostic techniques in these species. A Bayesian latent-class model was used here to estimate the sensitivity and specificity of the Immuno-fluorescence antibody test (IFAT) in serum and a Leishmania-nested PCR (Ln-PCR) in skin for samples collected from 217 rabbits and 70 hares from two different populations in the region of Madrid, Spain. A two-population model, assuming conditional independence between test results and incorporating prior information on the performance of the tests in other animal species obtained from the literature, was used. Two alternative cut-off values were assumed for the interpretation of the IFAT results: 1/50 for conservative and 1/25 for sensitive interpretation. Results suggest that sensitivity and specificity of the IFAT were around 70–80%, whereas the Ln-PCR was highly specific (96%) but had a limited sensitivity (28.9% applying the conservative interpretation and 21.3% with the sensitive one). Prevalence was higher in the rabbit population (50.5% and 72.6%, for the conservative and sensitive interpretation, respectively) than in hares (6.7% and 13.2%). Our results demonstrate that the IFAT may be a useful screening tool for diagnosis of leishmaniasis in rabbits and hares. These results will help to design and implement surveillance programmes in wild species, with the ultimate objective of early detecting and preventing incursions of the disease into domestic and human populations.
Resumo:
The interactions between host individual, host population, and environmental factors modulate parasite abundance in a given host population. Since adult exophilic ticks are highly aggregated in red deer (Cervus elaphus) and this ungulate exhibits significant sexual size dimorphism, life history traits and segregation, we hypothesized that tick parasitism on males and hinds would be differentially influenced by each of these factors. To test the hypothesis, ticks from 306 red deer-182 males and 124 females-were collected during 7 years in a red deer population in south-central Spain. By using generalized linear models, with a negative binomial error distribution and a logarithmic link function, we modeled tick abundance on deer with 20 potential predictors. Three models were developed: one for red deer males, another for hinds, and one combining data for males and females and including "sex" as factor. Our rationale was that if tick burdens on males and hinds relate to the explanatory factors in a differential way, it is not possible to precisely and accurately predict the tick burden on one sex using the model fitted on the other sex, or with the model that combines data from both sexes. Our results showed that deer males were the primary target for ticks, the weight of each factor differed between sexes, and each sex specific model was not able to accurately predict burdens on the animals of the other sex. That is, results support for sex-biased differences. The higher weight of host individual and population factors in the model for males show that intrinsic deer factors more strongly explain tick burden than environmental host-seeking tick abundance. In contrast, environmental variables predominated in the models explaining tick burdens in hinds.