2 resultados para Pointers of performance

em Universidade Complutense de Madrid


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Temporal-order judgment (TOJ) and simultaneity judgment (SJ) tasks are used to study differences in speed of processing across sensory modalities, stimulus types, or experimental conditions. Matthews and Welch (2015) reported that observed performance in SJ and TOJ tasks is superior when visual stimuli are presented in the left visual field (LVF) compared to the right visual field (RVF), revealing an LVF advantage presumably reflecting attentional influences. Because observed performance reflects the interplay of perceptual and decisional processes involved in carrying out the tasks, analyses that separate out these influences are needed to determine the origin of the LVF advantage. We re-analyzed the data of Matthews and Welch (2015) using a model of performance in SJ and TOJ tasks that separates out these influences. Parameter estimates capturing the operation of perceptual processes did not differ between hemifields by these analyses, whereas parameter estimates capturing the operation of decisional processes differed. In line with other evidence, perceptual processing also did not differ between SJ and TOJ tasks. Thus, the LVF advantage occurs with identical speeds of processing in both visual hemifields. If attention is responsible for the LVF advantage, it does not exert its influence via prior entry.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Recent technological developments in the field of experimental quantum annealing have made prototypical annealing optimizers with hundreds of qubits commercially available. The experimental demonstration of a quantum speedup for optimization problems has since then become a coveted, albeit elusive goal. Recent studies have shown that the so far inconclusive results, regarding a quantum enhancement, may have been partly due to the benchmark problems used being unsuitable. In particular, these problems had inherently too simple a structure, allowing for both traditional resources and quantum annealers to solve them with no special efforts. The need therefore has arisen for the generation of harder benchmarks which would hopefully possess the discriminative power to separate classical scaling of performance with size from quantum. We introduce here a practical technique for the engineering of extremely hard spin-glass Ising-type problem instances that does not require "cherry picking" from large ensembles of randomly generated instances. We accomplish this by treating the generation of hard optimization problems itself as an optimization problem, for which we offer a heuristic algorithm that solves it. We demonstrate the genuine thermal hardness of our generated instances by examining them thermodynamically and analyzing their energy landscapes, as well as by testing the performance of various state-of-the-art algorithms on them. We argue that a proper characterization of the generated instances offers a practical, efficient way to properly benchmark experimental quantum annealers, as well as any other optimization algorithm.