2 resultados para Plasma immersion ion implantation and deposition
em Universidade Complutense de Madrid
Resumo:
In TJ-II stellarator plasmas, in the electron cyclotron heating regime, an increase in the ion temperature is observed, synchronized with that of the electron temperature, during the transition to the core electron-root confinement (CERC) regime. This rise in ion temperature should be attributed to the joint action of the electron–ion energy transfer (which changes slightly during the CERC formation) and an enhancement of the ion confinement. This improvement must be related to the increase in the positive electric field in the core region. In this paper, we confirm this hypothesis by estimating the ion collisional transport in TJ-II under the physical conditions established before and after the transition to CERC. We calculate a large number of ion orbits in the guiding-centre approximation considering the collisions with a background plasma composed of electrons and ions. The ion temperature profile and the thermal flux are calculated in a self-consistent way, so that the change in the ion heat transport can be assessed.
Resumo:
We report the observation of the insulator-to-metal transition in crystalline silicon samples supersaturated with vanadium. Ion implantation followed by pulsed laser melting and rapid resolidification produce high quality single-crystalline silicon samples with vanadium concentrations that exceed equilibrium values in more than 5 orders of magnitude. Temperature-dependent analysis of the conductivity and Hall mobility values for temperatures from 10K to 300K indicate that a transition from an insulating to a metallic phase is obtained at a vanadium concentration between 1.1 × 10^(20) and 1.3 × 10^(21) cm^(−3) . Samples in the insulating phase present a variable-range hopping transport mechanism with a Coulomb gap at the Fermi energy level. Electron wave function localization length increases from 61 to 82 nm as the vanadium concentration increases in the films, supporting the theory of impurity band merging from delocalization of levels states. On the metallic phase, electronic transport present a dispersion mechanism related with the Kondo effect, suggesting the presence of local magnetic moments in the vanadium supersaturated silicon material.