2 resultados para Pin on disc tests
em Universidade Complutense de Madrid
Resumo:
Aims. We study in detail nine sources in the direction of the young σ Orionis cluster, which is considered to be a unique site for studying stellar and substellar formation. The nine sources were selected because of their peculiar properties, such as extremely-red infrared colours or excessively strong Hα emission for their blue optical colours. Methods. We acquired high-quality, low-resolution spectroscopy (R ∼ 500) of the nine targets with ALFOSC at the Nordic Optical Telescope. We also re-analysed [24]-band photometry from MIPS/Spitzer and compiled the highest quality photometric dataset available at the ViJHK_s passbands and the four IRAC/Spitzer channels, for constructing accurate spectral energy distributions between 0.55 and 24 μm. Results. The nine targets were classified into: one Herbig Ae/Be star with a scattering edge-on disc; two G-type stars; one X-ray flaring, early-M, young star with chromospheric Hα emission; one very low-mass, accreting, young spectroscopic binary; two young objects at the brown-dwarf boundary with the characteristics of classical T Tauri stars; and two emission-line galaxies, one undergoing star formation, and another whose spectral energy distribution is dominated by an active galactic nucleus. We also discovered three infrared sources associated with overdensities in a cold cloud of the cluster centre. Conclusions. Low-resolution spectroscopy and spectral energy distributions are a vital tool for measuring the physical properties and evolution of young stars and candidates in the σ Orionis cluster.
Resumo:
Purpose: The purpose of this study was to develop and validate a multivariate predictive model to detect glaucoma by using a combination of retinal nerve fiber layer (RNFL), retinal ganglion cell-inner plexiform (GCIPL), and optic disc parameters measured using spectral-domain optical coherence tomography (OCT). Methods: Five hundred eyes from 500 participants and 187 eyes of another 187 participants were included in the study and validation groups, respectively. Patients with glaucoma were classified in five groups based on visual field damage. Sensitivity and specificity of all glaucoma OCT parameters were analyzed. Receiver operating characteristic curves (ROC) and areas under the ROC (AUC) were compared. Three predictive multivariate models (quantitative, qualitative, and combined) that used a combination of the best OCT parameters were constructed. A diagnostic calculator was created using the combined multivariate model. Results: The best AUC parameters were: inferior RNFL, average RNFL, vertical cup/disc ratio, minimal GCIPL, and inferior-temporal GCIPL. Comparisons among the parameters did not show that the GCIPL parameters were better than those of the RNFL in early and advanced glaucoma. The highest AUC was in the combined predictive model (0.937; 95% confidence interval, 0.911–0.957) and was significantly (P = 0.0001) higher than the other isolated parameters considered in early and advanced glaucoma. The validation group displayed similar results to those of the study group. Conclusions: Best GCIPL, RNFL, and optic disc parameters showed a similar ability to detect glaucoma. The combined predictive formula improved the glaucoma detection compared to the best isolated parameters evaluated. The diagnostic calculator obtained good classification from participants in both the study and validation groups.