3 resultados para Physical mechanisms

em Universidade Complutense de Madrid


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Because of its relevance for the global climate the Atlantic meridional overturning circulation (AMOC) has been a major research focus for many years. Yet the question of which physical mechanisms ultimately drive the AMOC, in the sense of providing its energy supply, remains a matter of controversy. Here we review both observational data and model results concerning the two main candidates: vertical mixing processes in the ocean's interior and wind-induced Ekman upwelling in the Southern Ocean. In distinction to the energy source we also discuss the role of surface heat and freshwater fluxes, which influence the volume transport of the meridional overturning circulation and shape its spatial circulation pattern without actually supplying energy to the overturning itself in steady state. We conclude that both wind-driven upwelling and vertical mixing are likely contributing to driving the observed circulation. To quantify their respective contributions, future research needs to address some open questions, which we outline.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The atmospheric seasonal cycle of the North Atlantic region is dominated by meridional movements of the circulation systems: from the tropics, where the West African Monsoon and extreme tropical weather events take place, to the extratropics, where the circulation is dominated by seasonal changes in the jetstream and extratropical cyclones. Climate variability over the North Atlantic is controlled by various mechanisms. Atmospheric internal variability plays a crucial role in the mid-latitudes. However, El Niño-Southern Oscillation (ENSO) is still the main source of predictability in this region situated far away from the Pacific. Although the ENSO influence over tropical and extra-tropical areas is related to different physical mechanisms, in both regions this teleconnection seems to be non-stationary in time and modulated by multidecadal changes of the mean flow. Nowadays, long observational records (greater than 100 years) and modeling projects (e.g., CMIP) permit detecting non-stationarities in the influence of ENSO over the Atlantic basin, and further analyzing its potential mechanisms. The present article reviews the ENSO influence over the Atlantic region, paying special attention to the stability of this teleconnection over time and the possible modulators. Evidence is given that the ENSO–Atlantic teleconnection is weak over the North Atlantic. In this regard, the multidecadal ocean variability seems to modulate the presence of teleconnections, which can lead to important impacts of ENSO and to open windows of opportunity for seasonal predictability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A thermal evaporation method developed in the research group enables to grow and design several morphologies of semiconducting oxide nanostructures, such as Ga_2O_3, GeO_2 or Sb_2O_3, among others, and some ternary oxide compounds (ZnGa_2O_4, Zn_2GeO_4). In order to tailor physical properties, a successful doping of these nanostructures is required. However, for nanostructured materials, doping may affect not only their physical properties, but also their morphology during the thermal growth process. In this paper, we will show some examples of how the addition of impurities may result into the formation of complex structures, or changes in the structural phase of the material. In particular, we will consider the addition of Sn and Cr impurities into the precursors used to grow Ga_2O_3, Zn_2GeO_4 and Sb_2O_3 nanowires, nanorods or complex nanostructures, such as crossing wires or hierarchical structures. Structural and optical properties were assessed by electron microscopy (SEM and TEM), confocal microscopy, spatially resolved cathodoluminescence (CL), photoluminescence, and Raman spectroscopies. The growth mechanisms, the luminescence bands and the optical confinement in the obtained oxide nanostructures will be discussed. In particular, some of these nanostructures have been found to be of interest as optical microcavities. These nanomaterials may have applications in optical sensing and energy devices.