2 resultados para Perú--Condiciones económicas--Modelos matemáticos
em Universidade Complutense de Madrid
Resumo:
We describe Janus, a massively parallel FPGA-based computer optimized for the simulation of spin glasses, theoretical models for the behavior of glassy materials. FPGAs (as compared to GPUs or many-core processors) provide a complementary approach to massively parallel computing. In particular, our model problem is formulated in terms of binary variables, and floating-point operations can be (almost) completely avoided. The FPGA architecture allows us to run many independent threads with almost no latencies in memory access, thus updating up to 1024 spins per cycle. We describe Janus in detail and we summarize the physics results obtained in four years of operation of this machine; we discuss two types of physics applications: long simulations on very large systems (which try to mimic and provide understanding about the experimental non equilibrium dynamics), and low-temperature equilibrium simulations using an artificial parallel tempering dynamics. The time scale of our non-equilibrium simulations spans eleven orders of magnitude (from picoseconds to a tenth of a second). On the other hand, our equilibrium simulations are unprecedented both because of the low temperatures reached and for the large systems that we have brought to equilibrium. A finite-time scaling ansatz emerges from the detailed comparison of the two sets of simulations. Janus has made it possible to perform spin glass simulations that would take several decades on more conventional architectures. The paper ends with an assessment of the potential of possible future versions of the Janus architecture, based on state-of-the-art technology.
Resumo:
A la industria alimentaria se le exigen productos seguros, nutritivos, apetecibles y de uso cómodo y rápido. Aunar todos esos calificativos en un solo alimento es ardua tarea. Valgan dos ejemplos. Un tratamiento conservante intenso, de buenas perspectivas sanitarias, suele conllevar una pérdida de valor nutritivo y unas características sensoriales poco atractivas. El manejo de los alimentos para transformarlos en productos listos pare el consumo implica la asunción de ciertos riesgos microbiológicos, mayores que los asumidos en productos sin manipulación. ¿Cómo responder ante el incremento de riesgos y peligros que se ciernen sobre los “nuevos alimentos”? Una alternativa que ha ganado correligionarios es la microbiología predictiva. Es una herramienta útil, a disposición de cualquier entidad interesada en los alimentos, que predice, mediante modelos matemáticos, el comportamiento microbiano bajo ciertas condiciones. La mayoría de los modelos disponibles predicen valores únicos (a cada valor de la variable independiente le corresponde un único valor de la dependiente); han demostrado su eficacia durante décadas a base de tratamientos sobredimensionados para salvaguardar la calidad microbiológica de los alimentos y predicen una media, sin considerar la variabilidad. Considérese un valor de reducción decimal, D, de 1 minuto. Si el producto contiene 103 ufc/g, un envase de 1 Kg que haya pasado por un tratamiento 6D, contendrá 1 célula viable. Hasta aquí la predicción de un modelo clásico. Ahora piénsese en una producción industrial, miles de envases de 1 Kg/h. ¿Quién puede creerse que en todos ellos habrá 1 microorganismo superviviente? ¿No es más creíble que en unos no quedará ningún viable, en muchos 1, en otros 2, 3 y quizás en los menos 5 ó 6? Los modelos que no consideran la variabilidad microbiana predicen con precisión la tasa de crecimiento pero han fracasado en la predicción de la fase de latencia...