4 resultados para Partial of the First Order
em Universidade Complutense de Madrid
Resumo:
We investigate by means of Monte Carlo simulation and finite-size scaling analysis the critical properties of the three dimensional O (5) non-linear σ model and of the antiferromagnetic RP^(2) model, both of them regularized on a lattice. High accuracy estimates are obtained for the critical exponents, universal dimensionless quantities and critical couplings. It is concluded that both models belong to the same universality class, provided that rather non-standard identifications are made for the momentum-space propagator of the RP^(2) model. We have also investigated the phase diagram of the RP^(2) model extended by a second-neighbor interaction. A rich phase diagram is found, where most of the phase transitions are of the first order.
Resumo:
We present a microcanonical Monte Carlo simulation of the site-diluted Potts model in three dimensions with eight internal states, partly carried out on the citizen supercomputer Ibercivis. Upon dilution, the pure model’s first-order transition becomes of the second order at a tricritical point. We compute accurately the critical exponents at the tricritical point. As expected from the Cardy-Jacobsen conjecture, they are compatible with their random field Ising model counterpart. The conclusion is further reinforced by comparison with older data for the Potts model with four states.
Resumo:
We present the first detailed numerical study in three dimensions of a first-order phase transition that remains first order in the presence of quenched disorder (specifically, the ferromagnetic-paramagnetic transition of the site-diluted four states Potts model). A tricritical point, which lies surprisingly near the pure-system limit and is studied by means of finite-size scaling, separates the first-order and second-order parts of the critical line. This investigation has been made possible by a new definition of the disorder average that avoids the diverging-variance probability distributions that plague the standard approach. Entropy, rather than free energy, is the basic object in this approach that exploits a recently introduced microcanonical Monte Carlo method.
Resumo:
We present a detailed numerical study on the effects of adding quenched impurities to a three dimensional system which in the pure case undergoes a strong first order phase transition (specifically, the ferromagnetic/paramagnetic transition of the site-diluted four states Potts model). We can state that the transition remains first-order in the presence of quenched disorder (a small amount of it) but it turns out to be second order as more impurities are added. A tricritical point, which is studied by means of Finite-Size Scaling, separates the first-order and second-order parts of the critical line. The results were made possible by a new definition of the disorder average that avoids the diverging-variance probability distributions that arise using the standard methodology. We also made use of a recently proposed microcanonical Monte Carlo method in which entropy, instead of free energy, is the basic quantity.